Đề thi tuyển sinh lớp 10 THPT năm học 2012 - 2013 môn thi: Toán - Đề 2

Câu 1. (2 điểm)

 1.Tính

 2 .Xác định giá trị của a,biết đồ thị hàm số y = ax - 1 đi qua điểm M(1;5)

Câu 2: (3 điểm)

 1.Rút gọn biểu thức: với a>0,a

 2.Giải hệ pt:

 3. Chứng minh rằng pt: luôn có nghiệm với mọi giá trị của m.

Giả sử x1,x2 là 2 nghiệm của pt đã cho,tìm giá trị nhỏ nhất của biểu thức

 

doc 4 trang Người đăng trung218 Ngày đăng 06/04/2017 Lượt xem 190Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi tuyển sinh lớp 10 THPT năm học 2012 - 2013 môn thi: Toán - Đề 2", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO	 ĐỀ THI TUYỂN SINH LỚP 10 THPT
	 BẮC GIANG NĂM HỌC 2012-2013
ĐỀ CHÍNH THỨC
	 Môn thi : Toán 
	 Thời gian : 120 phút không kể thời gian giao đề 
 Ngày thi 30 tháng 6 năm 2012
Câu 1. (2 điểm)
 1.Tính 
 2 .Xác định giá trị của a,biết đồ thị hàm số y = ax - 1 đi qua điểm M(1;5)
Câu 2: (3 điểm)
 1.Rút gọn biểu thức: với a>0,a
 2.Giải hệ pt: 
 3. Chứng minh rằng pt: luôn có nghiệm với mọi giá trị của m.
Giả sử x1,x2 là 2 nghiệm của pt đã cho,tìm giá trị nhỏ nhất của biểu thức
Câu 3: (1,5 điểm) 
 Một ôtô tải đi từ A đến B với vận tốc 40km/h. Sau 2 giờ 30 phút thì một ôtô taxi cũng xuất phát đi từ A đến B với vận tốc 60 km/h và đến B cùng lúc với xe ôtô tải.Tính độ dài quãng đường AB.
Câu 4: (3 điểm) 
 Cho đường tròn (O) và một điểm A sao cho OA=3R. Qua A kẻ 2 tiếp tuyến AP và AQ của đường tròn (O),với P và Q là 2 tiếp điểm.Lấy M thuộc đường tròn (O) sao cho PM song song với AQ.Gọi N là giao điểm thứ 2 của đường thẳng AM và đường tròn (O).Tia PN cắt đường thẳng AQ tại K.
 1.Chứng minh APOQ là tứ giác nội tiếp.
 2.Chứng minh KA2=KN.KP
 3.Kẻ đường kính QS của đường tròn (O).Chứng minh tia NS là tia phân giác của góc.
 4. Gọi G là giao điểm của 2 đường thẳng AO và PK .Tính độ dài đoạn thẳng AG theo bán kính R.
Câu 5: (0,5điểm)
 Cho a,b,c là 3 số thực khác không và thoả mãn:
 Hãy tính giá trị của biểu thức 
 HƯỚNG DẪN CHẤM (tham khảo)
Câu
Ý
Nội dung
Điểm
1
1
KL:
1
2
Do đồ thị hàm số y = ax-1 đi qua M(1;5) nên ta có a.1-1=5a=6
KL:
1
2
1
KL:
0,5
0,5
2
KL:
1
3
 Xét Pt: 
Vậy pt luôn có nghiệm với mọi m
Theo hệ thức Viet ta có
Theo đề bài 
Vậy minB=1 khi và chỉ khi m = -1
KL:
0,25
0,25
0,5
3
Gọi độ dài quãmg đường AB là x (km) x>0
Thời gian xe tải đi từ A đến B là h
Thời gian xe Taxi đi từ A đến B là :h
Do xe tải xuất phát trước 2h30phút = nên ta có pt
Giá trị x = 300 có thoả mãn ĐK 
Vậy độ dài quãng đường AB là 300 km.
0,25
0,25
0,25
0,25
0,25
0,25
4
1
Xét tứ giác APOQ có 
(Do AP là tiếp tuyến của (O) ở P)
(Do AQ là tiếp tuyến của (O) ở Q)
,mà hai góc này là 2 góc đối nên tứ giác APOQ là tứ giác nội tiếp 
0,75
2
Xét AKN và PAK có là góc chung
 ( Góc ntcùng chắn cung NP)
Mà (so le trong của PM //AQ
AKN ~ PKA (gg) (đpcm)
0,75
3
Kẻ đường kính QS của đường tròn (O)
Ta có AQQS (AQ là tt của (O) ở Q)
Mà PM//AQ (gt) nên PMQS 
Đường kính QS PM nên QS đi qua điểm chính giữa của cung PM nhỏ
(hai góc nt chắn 2 cung bằng nhau)
Hay NS là tia phân giác của góc PNM
0,75
4
Chứng minh được AQO vuông ở Q, có QGAO(theo Tính chất 2 tiếp tuyến cắt nhau)
Theo hệ thức lượng trong tam giác vuông ta có
Do KNQ ~KQP (gg) mà nên AK=KQ
Vậy APQ có các trung tuyến AI và PK cắt nhau ở G nên G là trọng tâm
0,75
5
Ta có: 
*TH1: nếu a+ b=0 
Ta có ta có 
Các trường hợp còn lại xét tương tự
Vậy 
0,25
0,25
“Bề dày thời gian tồn tại – Chất lượng giáo viên, lòng nhiệt tình - Số lượng lớn học sinh theo học và đạt thành tích cao- Số lượng tài liệu khổng lồ được học sinh, giáo viên, phụ huynh sử dụng CHÍNH LÀ NIỀM TỰ HÀO, SỰ KHẲNG ĐỊNH CỦA TT GIA SƯ – TT LUYỆN THI TẦM CAO MỚI”
Các em học sinh trên địa bàn Đông Hà (Quảng Trị) và các huyện lân cận (Cam Lộ, Triệu Phong, Gio Linh,) hoàn toàn có thể đăng kí và học tại nhà, để được hướng dẫn cụ thể các em hãy gọi theo số máy trung tâm. Ngoài ra các em có thể học tại trung tâm hoặc học tại nhà các giáo viên của trung tâm. 
Các em có thế đăng kí học các môn: Toán, Lý, Hóa, Sinh, Anh, Văn (các khối 9-12, Luyện thi đại học cấp tốc, luyện thi vào lớp 10 cấp tốc, luyện thi tốt nghiệp 12 cấp tốc). Riêng các lớp học từ khối 8 trở xuống, phụ huynh hay học sinh nào yêu cầu trung tâm sẽ cho giáo viên phù hợp về dạy kèm các em
Đối với giáo viên muôn tham gia trung tâm hãy điện thoại để biết thêm chi tiết cụ thể
MỌI CHI TIẾT XIN LIÊN HỆ 01662 843 844 – 0533 564384 – 0536 513844 – 0944323844

Tài liệu đính kèm:

  • docBac Giang 2012.doc