Đề thi tuyển sinh lớp 10 THPT năm học 2012 - 2013 môn thi: Toán - Đề 26

Câu I: (2,5 điểm)

1. Thực hiện phép tính:

2. Cho biểu thức: P =

a) Tìm điều kiện của a để P xác định b) Rút gọn biểu thức P.

Câu II: (1,5 điểm)

1. Cho hai hàm số bậc nhất y = -x + 2 và y = (m+3)x + 4. Tìm các giá trị của m để đồ thị của hàm số đã cho là:

 a) Hai đường thẳng cắt nhau

 b) Hai đường thẳng song song.

2. Tìm các giá trị của a để đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2).

 

doc 4 trang Người đăng trung218 Ngày đăng 06/04/2017 Lượt xem 172Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi tuyển sinh lớp 10 THPT năm học 2012 - 2013 môn thi: Toán - Đề 26", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO	KÌ THI TUYỂN SINH VÀO 10 - THPT
 TỈNH LÀO CAI	NĂM HỌC: 2012 – 2013
ĐỀ CHÍNH THỨC
 	 MÔN: TOÁN 
 Thời gian: 120 phút (không kể thời gian giao đề)
Câu I: (2,5 điểm)
1. Thực hiện phép tính: 
2. Cho biểu thức: P = 
a) Tìm điều kiện của a để P xác định	b) Rút gọn biểu thức P.
Câu II: (1,5 điểm) 
1. Cho hai hàm số bậc nhất y = -x + 2 và y = (m+3)x + 4. Tìm các giá trị của m để đồ thị của hàm số đã cho là:
	a) Hai đường thẳng cắt nhau
	b) Hai đường thẳng song song.
2. Tìm các giá trị của a để đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2).
Câu III: (1,5 điểm) 
1. Giải phương trình x 2 – 7x – 8 = 0
2. Cho phương trình x2 – 2x + m – 3 = 0 với m là tham số. Tìm các giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện 
Câu IV: (1,5 điểm) 
1. Giải hệ phương trình 
2. Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn điều kiện x + y > 1.
Câu V: (3,0 điểm) Cho nửa đường tròn tâm O đường kính AB = 2R và tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh AMOC là tứ giác nội tiếp đường tròn.
b) Chứng minh AMDE là tứ giác nội tiếp đường tròn.
c) Chứng mình 
-------- Hết ---------
HƯỚNG DẪN GIẢI:
Câu I: (2,5 điểm)
1. Thực hiện phép tính: 
2. Cho biểu thức: P = 
a) Tìm điều kiện của a để P xác định: 	P xác định khi 	
b) Rút gọn biểu thức P.
P ==
=
==
Vậy với thì P = 
Câu II: (1,5 điểm) 
1. Cho hai hàm số bậc nhất y = -x + 2 và y = (m+3)x + 4. Tìm các giá trị của m để đồ thị của hàm số đã cho là:
	a) Để hàm số y = (m+3)x + 4 là hàm số bậc nhất thì m + 3 0 suy ra m -3.
Đồ thị của hai hàm số đã cho là hai đường thẳng cắt nhau a a’
-1 m+3m -4 
Vậy với m -3 và m -4 thì đồ thị của hai hàm số đã cho là hai đường thẳng cắt nhau.
	b) Đồ thị của hàm số đã cho là Hai đường thẳng song song 
 thỏa mãn điều kiện m -3
Vậy với m = -4 thì đồ thị của hai hàm số đã cho là hai đường thẳng song song.
2. Tìm các giá trị của a để đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2).
Vì đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2) nên ta thay x = -1 và y = 2 vào hàm số ta có phương trình 2 = a.(-1)2 suy ra a = 2 (thỏa mãn điều kiện a 0)
Vậy với a = 2 thì đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2).
Câu III: (1,5 điểm) 
1. Giải phương trình x 2 – 7x – 8 = 0 có a – b + c = 1 + 7 – 8 = 0 suy ra x1= -1 và x2= 8
2. Cho phương trình x2 – 2x + m – 3 = 0 với m là tham số. Tìm các giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện .
Để phương trình có hai nghiệm x1; x2 thì ’ 0 ó 1 – m + 3 0 ó m 4
Theo viet ta có: x1+ x2 =2 (1) và x1. x2 = m – 3 (2)
Theo đầu bài: = 6 (3)
Thế (1) và (2) vào (3) ta có: (m - 3)(2)2 – 2(m-3)=6 ó 2m =12 ó m = 6 Không thỏa mãn điều kiện m 4 vậy không có giá trị nào của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện .
Câu IV: (1,5 điểm) 
1. Giải hệ phương trình 
2. Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn điều kiện x + y > 1.
Mà x + y > 1 suy ra m + m + 1 > 1 2m > 0 m > 0.
Vậy với m > 0 thì hệ phương trình có nghiệm (x; y) thỏa mãn điều kiện x + y > 1.
Câu V: (3,0 điểm) Cho nửa đường tròn tâm O đường kính AB = 2R và tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh AMCO là tứ giác nội tiếp đường tròn.
b) Chứng minh AMDE là tứ giác nội tiếp đường tròn.
c) Chứng mình 
Giải.
a) nên tứ giác AMCO nội tiếp
b) . Tứ giác AMDE có
D, E cùng nhìn AM dưới cùng một góc 900
Nên AMDE nội tiếp
c) Vì AMDE nội tiếp nên 
Vì AMCO nội tiếp nên 
Suy ra 
“Bề dày thời gian tồn tại – Chất lượng giáo viên, lòng nhiệt tình - Số lượng lớn học sinh theo học và đạt thành tích cao- Số lượng tài liệu khổng lồ được học sinh, giáo viên, phụ huynh sử dụng CHÍNH LÀ NIỀM TỰ HÀO, SỰ KHẲNG ĐỊNH CỦA TT GIA SƯ – TT LUYỆN THI TẦM CAO MỚI”
Các em học sinh trên địa bàn Đông Hà (Quảng Trị) và các huyện lân cận (Cam Lộ, Triệu Phong, Gio Linh,) hoàn toàn có thể đăng kí và học tại nhà, để được hướng dẫn cụ thể các em hãy gọi theo số máy trung tâm. Ngoài ra các em có thể học tại trung tâm hoặc học tại nhà các giáo viên của trung tâm. 
Các em có thế đăng kí học các môn: Toán, Lý, Hóa, Sinh, Anh, Văn (các khối 9-12, Luyện thi đại học cấp tốc, luyện thi vào lớp 10 cấp tốc, luyện thi tốt nghiệp 12 cấp tốc). Riêng các lớp học từ khối 8 trở xuống, phụ huynh hay học sinh nào yêu cầu trung tâm sẽ cho giáo viên phù hợp về dạy kèm các em
Đối với giáo viên muôn tham gia trung tâm hãy điện thoại để biết thêm chi tiết cụ thể
MỌI CHI TIẾT XIN LIÊN HỆ 01662 843 844 – 0533 564384 – 0536 513844 – 0944323844

Tài liệu đính kèm:

  • docLao Cai 2012.doc