Đề thi tuyển sinh lớp 10 THPT năm học 2012 - 2013 môn thi: Toán - Đề 9

Bài 1: (2,0 điểm)

1) Giải phương trình: (x + 1)(x + 2) = 0

2) Giải hệ phương trình:

Bài 2: (1,0 điểm)

 Rút gọn biểu thức

Bài 3: (1,5 điểm)

 Biết rằng đường cong trong hình vẽ bên là một parabol y = ax2.

1) Tìm hệ số a.

2) Gọi M và N là các giao điểm của đường thẳng

y = x + 4 với parabol. Tìm tọa độ của các điểm M và N.

Bài 4: (2,0 điểm)

 Cho phương trình x2 – 2x – 3m2 = 0, với m là tham số.

1) Giải phương trình khi m = 1.

2) Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa điều kiện .

 

doc 3 trang Người đăng trung218 Ngày đăng 06/04/2017 Lượt xem 208Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi tuyển sinh lớp 10 THPT năm học 2012 - 2013 môn thi: Toán - Đề 9", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO	KỲ THI TUYỂN SINH LỚP 10 THPT 	TP.ĐÀ NẴNG 	Năm học: 2012 – 2013
ĐỀ CHÍNH THỨC
	MÔN: TOÁN
	Thời gian làm bài: 120 phút 
Bài 1: (2,0 điểm)
Giải phương trình:	(x + 1)(x + 2) = 0
Giải hệ phương trình: 
Bài 2: (1,0 điểm)
y
	Rút gọn biểu thức 
y=ax2
Bài 3: (1,5 điểm)
	Biết rằng đường cong trong hình vẽ bên là một parabol y = ax2.
Tìm hệ số a.
2
Gọi M và N là các giao điểm của đường thẳng
y = x + 4 với parabol. Tìm tọa độ của các điểm M và N.
x
2
1
0
Bài 4: (2,0 điểm)
	Cho phương trình x2 – 2x – 3m2 = 0, với m là tham số.
Giải phương trình khi m = 1.
Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa điều kiện .
Bài 5: (3,5 điểm)
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B Î (O), C Î (O’). Đường thẳng BO cắt (O) tại điểm thứ hai là D.
Chứ`ng minh rằng tứ giác CO’OB là một hình thang vuông.
Chứng minh rằng ba điểm A, C, D thẳng hàng.
Từ D kẻ tiếp tuyến DE với đường tròn (O’) (E là tiếp điểm). Chứng minh rằng DB = DE.
BÀI GIẢI
Bài 1:
1) 	(x + 1)(x + 2) = 0 Û x + 1 = 0 hay x + 2 = 0 Û x = -1 hay x = -2
2) 	 Û Û 
Bài 2: = = 
 = = 4
Bài 3: 
1) 	Theo đồ thị ta có y(2) = 2 Þ 2 = a.22 Û a = ½ 
2)	Phương trình hoành độ giao điểm của y = và đường thẳng y = x + 4 là :
	x + 4 = Û x2 – 2x – 8 = 0 Û x = -2 hay x = 4
	y(-2) = 2 ; y(4) = 8. Vậy tọa độ các điểm M và N là (-2 ; 2) và (4 ; 8).
Bài 4:	
1)	Khi m = 1, phương trình thành : x2 – 2x – 3 = 0 Û x = -1 hay x = 3 (có dạng a–b + c = 0)
2)	Với x1, x2 ¹ 0, ta có : Û Û 3(x1 + x2)(x1 – x2) = 8x1x2
	Ta có : a.c = -3m2 £ 0 nên D ³ 0, "m
	Khi D ³ 0 ta có : x1 + x2 = và x1.x2 = £ 0
	Điều kiện để phương trình có 2 nghiệm ¹ 0 mà m ¹ 0 Þ D > 0 và x1.x2 < 0 Þ x1 < x2
	Với a = 1 Þ x1 = và x2 = Þ x1 – x2 = 
	Do đó, ycbt Û và m ¹ 0 
Û (hiển nhiên m = 0 không là nghiệm)
Û 4m4 – 3m2 – 1 = 0 Û m2 = 1 hay m2 = -1/4 (loại) Û m = ±1
B
C
E
D
A
O
O’
Bài 5:
1)	Theo tính chất của tiếp tuyến ta có OB, O’C vuông góc với BC Þ tứ giác CO’OB là hình thang vuông.
2)	Ta có góc ABC = góc BDC Þ góc ABC + góc BCA = 900 Þ góc BAC = 900
	Mặt khác, ta có góc BAD = 900 (nội tiếp nửa đường tròn)
	Vậy ta có góc DAC = 1800 nên 3 điểm D, A, C thẳng hàng.
3)	Theo hệ thức lượng trong tam giác vuông DBC ta có DB2 = DA.DC
	Mặt khác, theo hệ thức lượng trong đường tròn (chứng minh bằng tam giác đồng dạng) ta có DE2 = DA.DC Þ DB = DE.
“Bề dày thời gian tồn tại – Chất lượng giáo viên, lòng nhiệt tình - Số lượng lớn học sinh theo học và đạt thành tích cao- Số lượng tài liệu khổng lồ được học sinh, giáo viên, phụ huynh sử dụng CHÍNH LÀ NIỀM TỰ HÀO, SỰ KHẲNG ĐỊNH CỦA TT GIA SƯ – TT LUYỆN THI TẦM CAO MỚI”
Các em học sinh trên địa bàn Đông Hà (Quảng Trị) và các huyện lân cận (Cam Lộ, Triệu Phong, Gio Linh,) hoàn toàn có thể đăng kí và học tại nhà, để được hướng dẫn cụ thể các em hãy gọi theo số máy trung tâm. Ngoài ra các em có thể học tại trung tâm hoặc học tại nhà các giáo viên của trung tâm. 
Các em có thế đăng kí học các môn: Toán, Lý, Hóa, Sinh, Anh, Văn (các khối 9-12, Luyện thi đại học cấp tốc, luyện thi vào lớp 10 cấp tốc, luyện thi tốt nghiệp 12 cấp tốc). Riêng các lớp học từ khối 8 trở xuống, phụ huynh hay học sinh nào yêu cầu trung tâm sẽ cho giáo viên phù hợp về dạy kèm các em
Đối với giáo viên muôn tham gia trung tâm hãy điện thoại để biết thêm chi tiết cụ thể
MỌI CHI TIẾT XIN LIÊN HỆ 01662 843 844 - 0533564384 – 0536513844 – 0944323844

Tài liệu đính kèm:

  • docDa Nang 2012.doc