Giáo án môn Đại số 7 năm học 2013

A. MỤC TIÊU:

1. Kiến thức: HS giải thích được thế nào là hai góc đối đỉnh và nêu được tính chất: Hai góc đối đỉnh thì bằng nhau, vẽ được góc đối đỉnh với một góc cho trước.

2. Kỹ năng: Nhận biết các góc đối đỉnh trong một hình.

3. TháI độ: Bước đầu tập suy luận và biết cách trình bày một bài tập.

B. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH:

- GV: Thước thẳng, thước đo góc, bảng phụ.

 - HS: Thước thẳng, thước đo góc, giấy rời, bảng nhóm, bút viết bảng.

C.PHƯƠNG PHÁP

 

doc 182 trang Người đăng phammen30 Ngày đăng 12/04/2019 Lượt xem 118Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án môn Đại số 7 năm học 2013", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
nh.
+D ADE cân tại A, cạnh bên: AD, AE; cạnh đáy DE, góc ở đáy: AED, ADE, BAC là góc ở đỉnh.
1.Định nghĩa: D cân D là có hai cạnh bằng nhau.
DABC cân (AB = AC)
AB, AC: cạnh bên.
BC: cạnh đáy.
B, C: góc ở đáy.
Â: góc ở đỉnh.
Nói DABC cân tại A 
?1:
+D ABC cân tại A.
+D ADE cân tại A.
+D ACH cân tại A.
Hoạt động 2:Tính chất
-Yêu cầu làm?2 Đưa đề bài lên bảng phụ.
 D ABC cân tại A.
GT Â =Â
 KL So sánh ABD,ACD
1 HS đứng tại chỗ cm.
-Qua?2, hãy nhận xét về 2 góc ở đáy của tam giác cân?
-HS phát biểu định lý 1/126 SGK.
2.Tính chất:
?2:
*Định lý 1: 
D ABC (AB = AC) ị B = C
*Định lý 2: 
D ABC có B = Cị D ABC cân.
-
-Ngược lại nếu 1 tam giác có hai góc bằng nhau thì tam giác đó là tam giác gì?
-Cho đọc lại đề bài 44/125 SGK.
-Giới thiệu tam giác vuông cân: Cho tam giác ABC như hình 114. Hỏi có những đặc điểm gì?
-Nêu định nghĩa tam giác vuông cân. 
-Yêu cầu làm?3
Hoạt động 3. Củng cố
Làm BT 46 SGK
? Có mấy cách chứng minh tam giác cân?
*Định nghĩa Dvuông cân: Dvuông cân là D có hai cạnh góc vuông bằng nhau.
?3:
D ABC cân đỉnh A có: 
 = 90o
B + C = 90o
B = C = 45o (t.c D cân)
Hoạt động 3. Củng cố
Làm BT 46 SGK
? Có mấy cách chứng minh tam giác cân?
 Tiết 36
1. Kiểm tra
Phát biểu đn, t/c tam giác cân, cách vẽ tam giác cân
2. Bài mới
-Giới thiệu định nghĩa tam giác đều/126 SGK.
-Hai HS nhắc lại định nghĩa.
? Cách vẽ tam giác đều ntn?
-Vẽ hình vào vở theo GV
-Yêu cầu làm?4
-Yêu cầu HS chứng minh các hệ quả.
3.Tam giác đều: SGK
a)Định nghĩa: D có 3 cạnh bằng nhau.
?4: D ABC đều (AB = AC = BC)
 A= B = C= 60o.
b)Hệ quả: SGK
Hoạt động 4: Luyện tập củng cố
-Yêu cầu: Nêu định nghĩa và tính chất của tam giác cân.
-Yêu cầu nêu định nghĩa tam giác đều và các cách chứng minh tam giác đều.
-Thế nào là tam giác vuông cân?
- Phát biểu các định nghĩa và tính chất. 
-Yêu cầu làm BT 47 SGK Tr.127
-Làm miệng BT 47 SGK Tr.127
BT 47 SGK Tr.127:
D cân là: D ABD (vì AB = AD);
D ACE (vì AC = AE); 
DIHG (vìH = G = 700); 
DOMK (vì OM = OK); DONP (vì ON = OP); DOKP (vì OK = OP do DOMK = DONP)
Dđều là: DOMN (vì OM = ON = MN)
IV. Hướng dẫn về nhà.	
-Nắm vững định nghĩa và tính chất về góc của tam giác cân, tam giác vuông cân, tam giác đều. Nắm vững các cách chứng minh một tam giác là cân, là đều.
- BTVN: 46, 49, 50/127 SGK; 67, 68, 69, 70/106 SGK.
E.Rút kinh nghiệm giờ dạy
..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Ngày soạn 10/1/2013	Ngày dạy: 16 /1/2013
Tiết 37	 Luyện tập 
A.Mục tiêu: 	
 1Kiến thức: HS được củng cố các kiến thức về tam giác cân và hai dạng đặc biệt của tam giác cân.
 Biết chứng minh một tam giác cân; một tam giác đều.
 HS được biết thêm các thuật ngữ: định lý thuận, định lý đảo, biết quan hệ thuận đảo 
 của hai mệnh đề và hiểu rằng có những định lý không có định lý đảo. 
2. Kỹ năng: Có kỹ năng vẽ hình và tính số đo các góc (ở đỉnh hoặc ở đáy) của một tam giác cân.
3. Thỏi độ: Biết nhận xét bài làm của bạn và tự đánh giá bản thân, có tinh thần hợp tác trong học tập
B.Chuẩn bị của giáo viên và học sinh:
-GV: Thước thẳng, thước đo góc, êke, bảng phụ.
 -HS: Thước thẳng, thước đo góc, compa, bảng nhóm, bút viết bảng, vở BT in.
C.Phương pháp
Vấn đáp kết hợp hoạt động nhóm nhỏ
D.Tổ chức các hoạt động dạy học:
I. ổn định lớp (1 ph)
II. Kiểm tra bài cũ (10 ph).
-Câu hỏi 1:
+Định nghĩa tam giác cân. Phát biểu định lý 1 và định lý 2 về tính chất của tam giác cân.
+ Chữa BT 46/127 SGK:
a)Vẽ tam giác ABC cân tại B có cạnh đáy bằng 3cm, cạnh bên bằng 4cm.
b)Vẽ tam giác đều ABC có cạnh bằng 3cm.
-Câu hỏi 2: 	+Định nghĩa tam giác đều. Nêu các dấu hiệu nhận biết tam giác đều.
+Chữa BT 49/127 SGK:
a)Tính các góc ở đáy của một tam giác cân biết góc ở đỉnh bằng 40o.
b)Tính góc ở đỉnh của một tam giác cân biết góc ở đáy bằng 40o.
*Chữa BT 49/127 SGK:
a)Các góc ở đáy bằng nhau và bằng
 (180o – 40o)/2 = 70o.
b)Góc ở đỉnh của tam giác cân bằng 
 180o – 40o. 2 = 100o.
III. Bài mới (32 ph) 
HĐ của Thầy và Trò
Ghi bảng
Hoạt động 1: Luyện tập
-Yêu câu làm BT 50/127 SGK:
-1 HS đọc to đề bài.
-Cho tự làm 5 phút.
-Suy nghĩ trong 5 phút.
-Gọi 2 HS trình bày cách tính.
-Hai HS trình bày cách tính số đoABC.
-Yêu làm BT 51/128 SGK:
-Cho đọc to đề bài.
-1 HS đọc to đề bài trên bảng phụ.
- Gọi 1 HS lên bảng vẽ hình ghi GT và KL.
- Yêu cầu cả lớp vẽ hình và ghi GT, KL vào vở
- 1 HS lên bảng vẽ hình.
- Cả lớp vẽ hình và ghi GT, KL. 
- Muốn so sánh ABD,ACE ta làm thế nào?
- HS chứng minh: DBEC = DCDB
- Gọi 1 HS lên bảng trình bày.
-Yêu cầu tìm cách chứng minh khác.
- Hướng dẫn phân tích bài toán:
I.Luyện tập:
 1.BT 50/127 SGK:
a)Mái tôn có ABC= (180o - 145o)/2 = 17,5o.
b)Mái tôn có ABC= (180o -100o)/2 = 40o.
2.BT 51/128 SGK: 
 D ABC (AB = AC)
GT (D ẻ AC; E ẻ AB) 
 AD = AE
 a)So sánh ABD,ACE
I
KL b)DIBC là D gì? Tại sao?
Giải:
a. Xét DABD và DACE có:
AB = AC (gt); Â chung; AD = AE (gt)
ị DABD = DACE (c.g.c)
ịABD =ACE (góc tương ứng).
Cách 2: Xét DDBC và DECB có:
 BC cạnh chung
DBC = ECB; DC = EB (AB = AC; AE = AD)ị DDBC = DECB (c.g.c)
ịDBC = ECB mà B = C (D ABC cân) ịDBA = ECA
b. DIBC là D cân vì: Theo cm trên ta có: 
DBC = ECB hayIBC = ICB 
Hoạt động 2: giới thiệu bàI đọc thêm
-Yêu cầu 1 HS đọc to SGK bài đọc thêm.
-Hỏi: vậy hai định lý như thế nào là hai định lý thuận và đảo của nhau?
-Giới thiệu cách viết gộp hai định lý đảo của nhau và cách đọc kí hiệu Û (khi và chỉ khi).
-Lấy thêm VD về định lý thuận đảo.
-Lưu ý HS: Không phải định lý nào cũng có định lý đảo. VD định lý “Hai góc đối đỉnh thì bằng nhau”.
II.Bài đọc thêm: 
Định lý thuận, định lý đảo của nhau:
Nếu GT của định lý này là KL của định lý kia
VD1: định lý 1 và định lý 2 về tính chất D cân. Viết gộp:
Với mọi DABC: AB = AC Û B = C
VD2: SGK
-Chú ý: SGK.
IV. hướng dẫn về nhà (2 ph).	
-Ôn lại định nghĩa và tính chất tam giác cân, tam giác đều. Cách chứng minh một tam giác là tam giác cân, là tam giác đều.
-BTVN: 72, 73, 74, 75, 76/ 107 SBT.
.Rút kinh nghiệm giờ
............................................................................................................................................................................................................................................................................................................................................
Ngày soạn 12/1/2013	Ngày dạy: 19,23 /1/2013
Tiết 38 + 39	 Định lý py-ta-go
A.Mục tiêu: 	
 1. Kiến thức: Học sinh nắm được định lý Pytago về quan hệ giữa ba cạnh của tam giác và định lý đảo.
Biết vận dụng định lý Pytago để tính độ dài của một cạnh của tam giác vuông khi biết độ dài hai cạnh kia.
 2. Kỹ năng: Vận dụng định lý Pytago đảo để nhận biết một tam giác là tam giác vuông.
Vận dụng kiến thức đã học vào thực tế.
Đọc tên các cạnh trong tam giác vuông.
Vẽ tam giác vuông.
3. Thỏi độ: Biết nhận xét bài làm của bạn và tự đánh giá bản thân, có tinh thần hợp tác trong học tập
B. Chuẩn bị của GV và HS.
GV: + Máy chiếu, bài tập và lời giải một số bài tập.
 + Hai tấm bìa hình vuông có cạnh là (a+b) và tám hình tam giác vuông bằng nhau có độ dài hai cạnh vuông là a và b.
2. HS: Thước thẳng, eke, compa, máy tính bỏ túi, bảng phụ nhóm, bút dạ.
C.Phương pháp
Đặt và giải quyết vấn đề, vấn đáp kết hợp hoạt động nhóm nhỏ 
A
B
D. Tiến trình dạy - học.
I. ổn định lớp (1 ph)
C
II. Kiểm tra bài cũ (7 ph)
Câu 1: Xác định tên các cạnh trong tam giác vuông sau:
Câu 2: Vẽ tam giác vuông có các cạnh góc vuông bằng 3cm và 4cm.
 Đo độ dài cạnh huyền của tam giác? 
III.Bài mới
- Đặt vấn đề: Không đo BC, có cách nào tính độ dài BC hay không?
HĐ của Thầy và Trò
Ghi bảng
Hoạt động 1: Định lý Pytago
Nêu nội dung yêu cầu của hoạt động nhóm và cho học sinh thực hành hoạt động nhóm ghép hình.
vẽ trên bảng.
A) Phần bìa không bị che lấp là một hình vuông có cạnh là c.
-Hãy tính diện tích phần bìa đó theo c?
B) Phần bìa không bị che lấp là hai hình vuông có cạnh là a và b.
-Hãy tính diện tích phần bìa đó theo a và b?
-Có nhận xét gì về diện tích phần bìa không bị che lấp ở hai hình? Giải thích?
-Diện tích phần bìa không bị che lấp ở hai hình bằng nhau vì diện tích phần bìa không bị che lấp ở hai hình đều bằng diện tích hình vuông trừ đi diện tích bốn tam giác vuông.
-Từ đó có nhận xét gì về quan hệ giữa 
c2 và a2 + b2.
-Mà a, b, c là gì?
- a, b, c là độ dài 3 cạnh của tam giác vuông (c_cạnh huyền, a và b_cạnh góc vuông).
-Hệ thức đó nói lên điều gì?
-Đó là nội dung định lý Pytago mà sau này sẽ được chứng minh.
-Cho học sinh đọc nội dung định lý.
-GV vẽ hình và tóm tắt định lý theo hình vẽ
-GV nêu phần lưu ý cho học sinh.
-HS đọc đề bài tập áp dụng trên bảng và sử dụng định lý Pytago để giải bài toán.
B
C
x
1
1
A
D ABC vuông tại A. Tính x
A
C
B
x
8
10
-Lưu ý cho hs định lý Pytago chỉ áp dụng cho tam giác vuông và độ dài của cạnh tam giác luôn dương.
-Trở lại câu hỏi ban đầu trong phần đặt vấn đề: Không đo BC có tính được độ dài cạnh BC không? Em hãy thử tính xem.
-Hs tính và kết luận BC = 5cm (giống với đo ban đầu).
Hoạt động nhóm:
-Cho 8 D vuông bằng nhau có 2 cạnh góc vuông bằng a và b, cạnh huyền là c.
-Cho 2 tấm bìa hình vuông cạnh bằng a+b. 
A) Đặt 4 D lên 1 hình vuông như hình vẽ:
a
b
c
b
a
c
a
b
c
a
b
c
Diện tích phần bìa không bị che lấp là c2
B) Đặt 4 D lên 1 hình vuông như hình vẽ:
Diện tích phần bìa không bị che lấp là a2 + b2
b
a
a
b
c
a
 b
a
b
c
-Ta có c2 = a2 + b2 
a
b
c
B
A
C
Trong tam giác vuông, bình phương độ dài cạnh huyền bằng tổng các bình phương độ dài hai cạnh góc vuông.
I.Định lý Pytago
D ABC vuông tại A 
 đ BC2 = AB2+ AC2 
 Hay a2 = b2 + c2 
*Lưu ý: Sgk.
*áp dụng: D ABC vuông tại A. Tính x?
Giải: a.Vì D ABC vuông tại A, theo định lý Pytago, ta có: BC2 = AB2+ AC2 
ị AC2 = BC2 – AB2
Hay x2 = 102 – 82 = 36 ị x = 6 (vì x > 0).
b. Vì DABC vuông tại A, theo định lý Pytago, ta có: BC2 = AB2+AC2 
 hay x2 = 12+ 12= 2 ị x = (vì x > 0).
Tiết 39
Hoạt động 2: Định lý Pytago đảo
-Cho Hs làm tiếp bài thực hành 2 (đo góc).
-HS đo được góc BAC = 900.
-GV hỏi HS về mối quan hệ của ba số 3, 4, 5 (bình phương số lớn nhất với tổng bình phương của hai số còn lại) rồi nêu định lý Pytago đảo.
-Hs đọc định lý Sgk.
-Gv vẽ hình và tóm tắt định lý theo hình vẽ.
Bài thực hành 2: Cho tam giác ABC có số đo 3 cạnh là 3dm, 4dm, 5dm. Hãy đo BAC?
BAC= 900.
II. Định lý Pytago đảo
A
B
C
B
A
5
4
3
?
C
D ABC có: 
BC2= AB2+AC2
ị â = 900
Hoạt động 3: Củng cố – Luyện tập
-Nêu lại định lý Pytago thuận và đảo.
-Chỉ rõ giả thiết và kết luận của từng định lý.
-Nhận xét về giả thiết và kết luận của 2 định lý đó.
-Giả thiết của định lý này là kết luận của định lý kia.
-Gv chốt lại về định lý Pytago.
-Cho Hs làm bài tập nhận dạng tam giác.
-Hs dùng máy tính điện tử bỏ túi và sử dụng định lý Pytago đảo để tính toán và kết luận bài toán.
-Gv hướng dẫn Hs cách làm đó là tính tổng bình phương của hai cạnh bé và tính bình phương cạnh lớn nhất sau đó so sánh chúng với nhau.
-Với tam giác thỏa mãn là tam giác vuông yêu cầu chỉ rõ độ dài hai cạnh góc vuông và độ dài cạnh huyền.
* DABC: BC2 = AB2 + AC2 Û Â = 900
Bài tập 1 (Xem ai nhanh hơn): Dùng máy tính kiểm tra xem tam giác nào là tam giác vuông?
1) Tam giác có ba cạnh: 9cm, 15cm, 12cm 
2) Tam giác có ba cạnh: 5cm, 12cm, 13cm 
3) Tam giác có ba cạnh: 7cm, 7cm, 16cm
Giải: 
1)Ta có: 92 + 122 = 81 + 144 = 225
Và 152 = 225 ị 92 +122 = 152
Theo định lý Pytago đảo thì tam giác trên là tam giác vuông.
2)Ta có: 52 + 122 = 25 + 144 = 169
Và 132 = 169 ị 52 + 122 = 132
Theo định lý Pytago đảo thì tam giác trên là tam giác vuông.
3)Ta có: 72 + 72 = 49 + 49 = 98
Và 162 = 256 ị 72 + 72 ≠ 162
Theo định lý Pytago đảo thì tam giác trên không là tam giác vuông.
-Cho Hs đọc đề bài tập 2.
-Yêu càu 3 Hs đứng tại chỗ trả lời.
-Câu 1: Sai
-Câu 2: Đúng
-Câu 3: Đúng
Bài tập 2: Trong các câu sau câu nào đúng:
câu 1: Trong một tam giác vuông, bình phương một cạnh bằng tổng các bình phương của hai cạnh còn lại. 
Câu 2: Trong một tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông. 
câu 3: Trong một tam giác vuông, bình phương một cạnh góc vuông bằng hiệu bình phương của cạnh huyền và cạnh góc vuông kia. 
IV. Hướng dẫn về nhà (1 phút)
Học thuộc định lý Pytago (thuận và đảo).
Bài 54, 55, 56, 57, 58 sgk tr. 131, 132.
Bài 82, 83, 86 sbt tr.108.
Đọc mục “Có thể em chưa biết” sgk tr.132.
E.Rút kinh nghiệm giờ dạy
..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Ngày soạn 18/1/2013	 Ngày dạy: 25 /01/2013
Tiết 40	 Luyện tập 
A.Mục tiêu: 	
 1. Kiến thức: Tiếp tục củng cố định lý Pytago (thuận và đảo).
 2. Kỹ năng: - Vận dụng định lý Pytago để giải quyết bài tập và một số tình huống thực tế có nội dung phù hợp.
 - Giới thiệu một số bộ ba Pytago.
3. Thỏi độ: Biết nhận xét bài làm của bạn và tự đánh giá bản thân, có tinh thần hợp tác trong học tập
B.Chuẩn bị của giáo viên và học sinh:
1. GV: Thước thẳng, thước đo góc, êke, bảng phụ. Mô hình khớp vít minh hoạ BT 59/133 SGK, bảng phụ gắn hai hình vuông bằng bìa như hình 137/134 SGK.
 2. HS: Thước thẳng, thước đo góc, compa, bảng nhóm, bút viết bảng, vở BT in. Mỗi
 nhóm hai hình vuông bằng giấy có mầu khác nhau, 1 tấm bìa cứng.
C.Phương pháp
Vấn đáp kết hợp hoạt động nhóm nhỏ
D.Tổ chức các hoạt động dạy học:
 I. ổn định lớp (1 ph):
II. kiểm tra bài cũ (12 ph)
-Câu hỏi 1: +Phát biểu định lý Pytago.
+ Chữa BT 60/133 SGK: Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC (H ẻ BC). Cho biết AB = 13cm, AH = 12cm, HC = 16cm. Tính các độ dài AC, BC.
+Chữa BT 60/133 SGK: AC =? cm BC =? cm
Đáp số: AC = 20cm; 
BC = BH + HC = 5 + 16 = 21cm
 A 
 13 12
 B H 16 C
-Câu hỏi 2: Làm BT 59/133 SGK: Bạn Tâm muốn đóng một nép chéo AC để chiếc khung hình chữ nhật ABCD được vững hơn. Tính độ dài AC, biết rằng AD = 48cm, CD = 36cm.
+Chữa BT 59/133 SGK:
D vuông ACD có:
AC2 = AD2 + CD2 (đl Pytago) à AC2 = 482 +362
AC2 = 3600 ị AC = 60cm
 B C
 36cm
 A 48cm D
-Đưa ra mô hình khớp vít và hỏi: Nếu không có nép chéo AC thì khung ABCD sẽ thế nào?
-Trả lời: Khung ABCD khó giữ được là hình chữ nhật. Góc D có thể thay đổi không còn là 90o.
III. Luyện tập (30 ph)
HĐ của Thầy và Trò
Ghi bảng
Hoạt động 1: Luyện tập
-Yêu câu làm BT 61/133 SGK:
-1 HS đọc to đề bài.
-Cho tự làm 5 phút.
-GV đưa bảng phụ có vẽ sẵn hình 135/133 SGK.
-Gợi ý nên lấy thêm các điểm E, F, D trên hình.
-Gọi 3 HS trình bày cách tính.
-Ba HS trình bày cách tính độ dài các cạnh AB, BC, AC của tam giác ABC.
+D BEC vuông ở E, ta có: 
BC2 = CE2 + BE2 = 52 + 32 = 25 + 9 = 34 
ị BC = 
-Yêu cầu làm BT 62/133 SGK vào vở BT in:
 A 4m E 8m D
 3m
 O
6m
 B F C
-Muốn xen con cún tới được những vị trí nào trong vườn ta phải làm gì?
-Ta phải tính khoảng các từ vị trí con cún tới các điểm sau đó so sánh với độ dài sợi dây.
I.Luyện tập:
 1.BT 61/133 SGK:
 C E
 B
 F A D
áp dụng định lý Pitago lần lượt với các tam giác vuông:
+D ACF vuông ở F, ta có: 
AC2 = CF2 + AF2 = 42 + 32 
 = 16 + 9 = 25 = 52
 ịAC = 5.
+D ABD vuông ở D, ta có: 
AB2 = BD2 + AD2 = 12 + 22 
 = 1 + 4 = 5 = ()2
 ịAC = .
2.BT 62/133 SGK đố:
+Xét Dvuông AOE có: 
OA2 = OE2 + AE2 (ĐL Pytago)
 = 32 + 42 = 9 + 16 = 25 à OA = 5 m
+Tương tự có:
OB2 = 42 + 62 = 52 à OB ≈ 7,2 m
OC2 = 82 + 62 = 100 à OC = 10 m
OD2 = 32 + 82 = 73 à OD ≈ 8,54 m
Mà sợi dây dài 9 m nên con Cún có thể tới được các vị trí A, B, D nhưng không đến được vị trí C.
Hoạt động 2: thực hành: ghép hai hình vuông thành một hình vuông
-Lấy bảng phụ có gắn hai hình vuông ABCD cạnh a và DEFG cạnh b mầu khác nhau.
-Hướng dẫn Đặt đoạn AH = b trên cạnh AD, Nối AH, HF rồi cắt hình, ghép được hình vuông mới.
-Lắng nghe GV hướng dẫn.
-Yêu cầu HS ghép hình theo nhóm.
-Thực hành theo nhóm, khoảng 3 phút rồi đại diện nhóm lên bảng trình bày cụ thể.
-GV kiểm tra ghép hình của một số nhóm.
-Kết quả thực hành minh hoạ cho kiến thức nào?
-Kết quả thực hành thể hiện nội dung định lí Pytago.
II.Thực hành: Ghép hai hình vuông thành một hình vuông.
IV.Hướng dẫn về nhà (2 ph).	
-Ôn lại định lí Pytago (thuận, đảo).
-BTVN: 83, 84, 85, 90, 92/ 108, 109 SBT.
-Ôn ba trường hợp bằng nhau (c.c.c; c.g.c; g.c.g) của tam giác.
-Xem lại các hệ quả các trường hợp bằng nhau của tam giác vuông.
E.Rút kinh nghiệm giờ dạy
..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Ngày soạn 23/1/2013	Ngày dạy: 30 /01/2013; 1/2/2013
Tiết 41+ 42
Các trường hợp bằng nhau của tam giác vuông
A. Mục tiêu: 	 
Kiến thức: Học sinh nắm được các trường hợp bằng nhau của hai tam giác vuông. biết vận dụng định lí Pytago để cm trường hợp bằng nhau cạnh huyền – cạnh góc vuông.
Kỹ năng: Vận dụng các trường hợp bằng nhau của hai tam giác vuông để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau
Thỏi độ: Chủ động phát hiện và chiếm lĩnh tri thức mới, có tinh thần hợp tác trong học tập
B. Chuẩn bị của GV và HS.
GV: Thước thẳng, Êke, bảng phụ ghi sẵn câu hỏi và bài tập.
HS: Thước thẳng, Êke, dụng cụ học tập.
C.Phương pháp
Đặt và giải quyết vấn đề, vấn đáp kết hợp hoạt động nhóm nhỏ 
D.Tổ chức các hoạt động dạy học:
 	I. ổn định lớp (1 ph)
II. kiểm tra bài cũ (4 ph)
Câu hỏi: Nêu hệ quả các trường hợp bằng nhau của tam giác vuông được suy ra từ các trường hợp bằng nhau của tam giác.
III. Bài mới (39 ph)
HĐ của Thầy và Trò
Ghi bảng
Hoạt động 1: các trường hợp bằng nhau đã biết của Δ vuông
Hai tam giác vuông bằng nhau khi có những yếu tố nào bằng nhau?
-2 Δ vuông bằng nhau khi có:
+ Hai cạnh góc vuông bằng nhau
+Một cạnh góc vuông và một góc nhọn kề cạnh ấy bằng nhau.
+Cạnh huyền và một góc nhọn bằng nhau
*Các trường hợp bằng nhau của Δ vuông:
-Hai cạnh góc vuông.
-Cạnh góc vuông và góc nhọn kề.
-Cạnh huyền góc nhọn.
*?1
H.143: ΔABH = ΔACH (c-g-c)
.
-Cho Hs làm?1 (đưa đề lên bảng phụ)
-Một Hs làm trên bảng, cả lớp làm ra vở
-Ngoài các trường hợp bằng nhau đó của 2 Δ vuông, hôm nay ta sẽ biết thêm một trường hợp bằng nhau nữa của Δ vuông.
H.144: ΔDKE = ΔDKF (g-c-g)
H.145: ΔOMI = ΔONI (cạnh huyền-góc nhọn)
Hoạt động 2: trường hợp bằng nhau về cạnh huyền, cạnh góc vuông
Cho Hs đọc nội dung trong SGK về trường hợp bằng nhau cạnh huyền và cạnh góc vuông.
-Hs đọc sau đó vẽ hình và ghi GT-KL của định lí đó.
-Một Hs thao tác trên bảng.
-Hãy phát biểu ĐL Pytago, Δvuông ABC biết cạnh BC và AC có tính được cạnh AB không?
-Hs phát biểu và viết hệ thức tính cạnh AB.
-Tương tự hãy tính cạnh DE theo cạnh DF và 
EF của Δvuông DEF.
-Hs viết hệ thức tính cạnh DE theo DE và EF.
-Gt cho cạnh nào bằng nhau?
-Cho BC = EF; AC = DF
-Ta suy ra điều gì?
-Ta có: AB2 = DE2 AB = DE
*Định lí: SGK tr.135
 ΔABC: Â = 900
GT ΔDEF: 
 BC = EF; AC = DF
KL ΔABC = ΔDEF
Cm:
Xét ΔABC: Â= 900, Theo ĐL Pytago ta có:
AB2 + AC2 = BC2
AB2 = BC2 – AC2
Xét ΔDEF: , Theo ĐL Pytago ta có:
DE2 + DF2 = EF2
DE2 = EF2 – DF2
Mà BC = EF; AC = DF
 AB2 = DE2 AB = DE
Xét ΔABC và ΔDEF có:
AB = DE (cmt); BC = EF (gt); AC = DF (gt)
-
-Vậy ΔABC và ΔDEF có đủ yếu tố bằng nhau chưa?
-Yêu cầu 1 Hs trình bày trên bảng, cả lớp trình bày lại vào vở.
-Cho Hs làm tiếp?2 (đề bài đưa ra bảng phụ)
Cho ΔABC cân tại A, kẻ AH vuông góc với BC. Cmr ΔABH = ΔACH (giải bằng 2 cách)
-Hs làm bài theo 2 cách.
Vậy ΔABC = ΔDEF (c-c-c)
?2: Cách 1: ΔABH và ΔACH có: 
; AHB = AHC = 900; AB = AC (gt); AH chung
 ΔABH = ΔACH (cạnh huyền-cạnh góc vuông).
Cách 2: ΔABC cân nên B = C (t.c Δ cân)
 ΔABH = ΔACH (cạnh huyền-góc nhọn)
Hoạt động 3: Luyện tập
-Cho Hs đọc đề và vẽ hình, ghi GT-KL của bài 63 SGK tr.136
-Cả lớp suy nghĩ sau đó chứng minh bài, một Hs trình bày trên bảng, cả lớp làm ra vở sau đó nhận xét bài của bạn.
*Bài 63 SGK:
 ΔABC cân tại A
GT AH ┴ BC 
KL a, HB = HC
 b, 
Cm:
Xét ΔABH và ΔACH có:
AHB = AHC = 900
AH chung; AB = AC (gt)
ΔABH = ΔACH (cạnh huyền, cạnh góc vuông) 
BAH = CAH = 900 
 HB = HC(Điều phải chứng minh)
IV. Hướng dẫn về nhà (2 ph).	
-Học thuộc và phát biểu chính xác các trường hợp bằng nhau của tam giác vuông.
-Làm bài tập 64, 65, 66 SGK tr.136, 137
E.Rút kinh nghiệm giờ dạy
..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Ngày soạn 12/2/2013	Ngày dạy: 20/2/2013
Tiết 43 	 Luyện tập	 
A.Mục tiêu: 	
 1. Kiến thức: Nắm vững các trường hợp bằng nhau của tam giác vuông
 2. Kỹ năng: Rèn kỹ năng chứng minh tam giác vuông bằng nhau, kỹ năng trình 

Tài liệu đính kèm:

  • docdai_so_lop_7.doc