Giáo án môn Đại số khối 9 - Tiết 3: Luyện tập

I. Mục tiêu:

 HS biết vận dụng hằng đẳng thức để giải các bài tập.

 Biết vận dụng để giải các dạng toán thường găp như: rút gọn, tìm x

II. Chuẩn bị của GV và HS:

- GV: SGK, phấn màu, thiết kế bài giảng, thước thẳng.

- HS: SGK, làm các bài tập về nhà.

III. Hoạt động của GV và HS:

 

doc 5 trang Người đăng phammen30 Ngày đăng 10/04/2019 Lượt xem 16Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án môn Đại số khối 9 - Tiết 3: Luyện tập", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn:
Ngày dạy:
Tuần: 1 Tiết: 3
 LUYỆN TẬP
I. Mục tiêu:
	HS biết vận dụng hằng đẳng thức để giải các bài tập.
	Biết vận dụng để giải các dạng toán thường găïp như: rút gọn, tìm x 
II. Chuẩn bị của GV và HS:
- GV: SGK, phấn màu, thiết kế bài giảng, thước thẳng.
- HS: SGK, làm các bài tập về nhà.
III. Hoạt động của GV và HS:
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
NỘI DUNG
Hoạt động 1: Thực hiện phép tính
- Cho HS làm bài tập 11(a,d)
- (GV hướng dẫn) Trước tiên ta tính các giá trị trong dấu căn trước rồi sau đó thay vào tính)
- HS: 11a)
= 4.5+14:7 = 20+2 = 22
(vì , , 
 , )
-HS:11d) ===5
Bài tập 11(a,d)
11a)
= 4.5+14:7 = 20+2 = 22
(vì , , , )
11d) ===5
Hoạt động 2: Tìm x để căn thức có nghĩa
- Cho HS làm bài tập 12 (b,c) SGK tr11
- có nghĩa khi nào?
- Vậy trong bài này ta phải tìm điều kiện để biểu thức dưới dấu căn là không âm hay lớn hoan hoặc bằng 0)
- có nghĩa khi A0
- HS 12b) có nghĩa khi -3x + 40 -3x -4
x. Vậy có nghĩa khi x.
- HS: 11c)có nghĩa khi -1 + x > 0 >1. Vậycó nghĩa khi x > 1.
Bài tập 12 (b,c)
12b) có nghĩa khi 
-3x + 40 -3x -4x. Vậy có nghĩa khi x.
11c)có nghĩa khi -1 + x > 0 x >1. Vậycó nghĩa khi x > 1.
Hoạt động 3: Rút gọn biểu thức
- Cho HS làm bài tập 13(a,b) SGK – tr11.
Rút gon biểu thức sau:
a) 2-5a với a < 0
b) +3a với a0
- HS: a) 2-5a với a < 0
Ta có: a < 0 nên= - a, do đó 2-5a = 2(-a) – 5a 
= -2 - 5a = -7a
- HS: b) +3a
- Ta có: a0 nên== = 5a
Do đó +3a= 5a + 3a = 8a.
Bài tập 13(a,b)
 a) 2-5a với a < 0
Ta có: a < 0 nên= - a, do đó 2-5a = 2(-a) – 5a = -2a-5a= -7a
b) +3a
- Ta có: a0 nên== = 5a
Do đó +3a= 5a + 3a = 8a.
Hoạt động 4: Phân tích thành nhân tử – giải phương trình
- Cho HS làm bài tập 14(a,b)
 Phân tích thành nhân tử:
a) x2 - 3
b) x2 - 6
- Cho HS làm bài tập 15a.
Giải phương trình
a) x2 -5 = 0
- HS: a) x2 - 3 = x2 - ()2 = (x- )(x+)
- HS: b) x2 – 6 = x2 – ()2
= (x - )(x + )
- HS: a) x2 -5 = 0 x2 = 5
 x = . Vậy x = 
Bài tập 14(a,b)
a) x2 - 3 = x2 - ()2 
= (x- )(x+)
b) x2 – 6 = x2 – ()2
= (x - )(x + )
Bài tập 15a
x2 -5 = 0 x2 = 5
 x = . Vậy x = 
Hoạt động 5: Hướng dẫn về nhà
- GV hướng dẫn HS làm bài tập 16.
- Về nhà làm các bài tập11(c,d), 12(b,d), 13c,d), 14c,d), 15b.
- Xem trước bài học tiếp theo.
IV. RÚT KINH NGHIỆM
Ngày soạn:
Ngày dạy:
Tuần: 2 Tiết: 4
§3 LIÊN HỆ GIỮA PHÉP NHÂN 
VÀ PHÉP KHAI PHƯƠNG.
I. Mục tiêu:
	Qua bài này học sinh cần:
	- Nắm được nội dung và cách chứng minh định lý về liên hệ giữa phép nhân và phép khai phương.
	- Có kỹ năng dùng các quy tắc khai phương một tích và nhân các căn bậc hai trong tính toán và biến đổi biểu thức.
II. Chuẩn bị của GV và HS:
- GV: SGK, phấn màu, thiết kế bài giảng, thước thẳng.
- HS: SGK, làm các bài tập về nhà.
III. Hoạt động của GV và HS:
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
NỘI DUNG
Hoạt động 1: Định lí
- Cho HS làm ?1
- GV giới thiệu định lý theo SGK.
- (GV và HS cùng chứng minh định lí)
Vì a0 và b0 nên xác định và không âm.
Ta có: ()2 = ()2.()2= a.b
Vậy là căn bậc hai số học của a.b, tức là 
- GV giới thiệu chú ý SGK
- HS làm ?1
Ta có: ==20
= 4.5 = 20
Vậy =
1. Định lí
 Với hai số a và b không âm, ta có 
ØChú ý:Định lí trên có thể mở rộng cho tích của nhiều số không âm
Hoạt động 2: Aùp dụng
- GV giới thiệu quy tắc SGK
- VD1: Aùp dụng quy tắc khai phương một tích, hãy tính:
a) 
b) 
- Trước tiên ta khai phương từng thừa số.
- Tương tự các em làm câu b.
- Cho HS làm ?2
a) 
b) 
- Hai HS lên bảng cùng thực hiện.
- VD2: Tính
a) 
b) 
- Trước tiên ta nhân các số dưới dấu căn
- Cho HS làm ?3
Tính
a)
b)
- Hai HS lên bảng cùng thực hiện.
- GV giới thiệu chú ý SGK
Ví dụ 3: Rút gọn biểu thức sau:
a) 
b) 
Giải:
a) =
====9a (viø a0)
Câu b HS làm
- Cho HS làm ?4
(HS hoạt động theo nhóm)
Cho HS thực hiện sau đó cử đại diện hai nhóm lên bảng trình bài.
- (HS ghi bài vào vỡ)
- HS: a) 
==7.1,2.5 = 42
- HS: b) = == 9.2.10 =180
HS1: a) 
=
= 0,4.0,8.15= 4,8
HS2: b) 
=== 5.6.10 = 300
- HS: a)= 
= 10
- HS2: b) 
==
==26
- HS1: a)
==15
- HS2: b)
==
==12.0,7=8,4
- HS cả lớp cùng làm.
- HS: b) =
=3=3
 ?4a) 
==
=6(vì a)
b) =
=8= 8ab (vì a0)
a) Quy tắc khai phương một tích
 Muốn khai phương một tích của các số không âm, ta có thể khai phương từng thừa số rồi nhân các kết quả với nhau.
Tính:
a) 
b) 
Giải:
a) 
=
=7.1,2.5 = 42
- HS: b) = == 9.2.10 =180
b) Quy tắc nhân các căn bậc hai.
 Muốn nhân các căn bậc hai của các số không âm, ta có thể nhân các số dưới dấu căn với nhau rồi khai phương kết quả đó.
VD2: Tính
a) 
b) 
Giải:
a)= 
= 10
b) 
==
==26
Ø Chú ý: Một cách tổng quát, với hai biểu thức A và B không âm ta có
Đặc biệt, với biểu thức A không âm ta có:
Hoạt động 3: Luyện tập – cũng cố
- Áp dụng quy tắc khai phương một tích, hãy tính
a)
b) 
- Rút gọn biểu thức sau
với a < 0
- HS1: a)
== 0,3.8 = 2,4
- HS2:
b) = ==22. = 4.7 = 28
- HS: =
= 0,6.= 0,6(-a)= -0,6a (vì a< 0)
Bài tập 17a
Giải:
a)
== 0,3.8 = 2,4
b) = ==22. = 4.7 = 28
Bài tập 19
Rút gọn biểu thức sau
với a < 0
Giải:
=
= 0,6.= 0,6(-a)= -0,6a (vì a< 0)
Hoạt động 4: Hướng dẫn về nhà
- Về nhà xem lại và nắm vững hai quy tắc khai: phương một tích và quy tắc nhân các căn bậc 2.
- Làm các bài tập 17(c ,d), 18, 19(b, c, d), 20, 21 và xem phần bài luyện tập để tiết sau ta luyện tập tại lớp. Xem trước bài học tiếp theo.
IV. RÚT KINH NGHIỆM

Tài liệu đính kèm:

  • docChuong_I_1_Mot_so_he_thuc_ve_canh_va_duong_cao_trong_tam_giac_vuong.doc