Chủ để: Giải phương trình chứa ẩn ở mẫu lớp 8

*Mục đích

Giúp học sinh nắm vững các bước giải phương trình chứa ẩn ở mẫu, cũng như rèn

luyện kỹ năng làm bài của các em.

*Yêu cầu

- Học sinh cần xem lại cách tìm ĐKXĐ, các quy đồng mẫu thức, các cách phân tích

đa thức thành nhân tử, để áp dụng vào dạng toán này.

- Các em xem thật kỹ các ví dụ thầy giải bên dưới, dựa vào đó, các em làm các bài

tập còn lại, nọp lên cho thầy trước 18/2/1016.

pdf 4 trang Người đăng phammen30 Lượt xem 974Lượt tải 0 Download
Bạn đang xem tài liệu "Chủ để: Giải phương trình chứa ẩn ở mẫu lớp 8", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Trần Hữu Nghị 
CHỦ ĐỂ: GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU LỚP 8 
*Mục đích 
Giúp học sinh nắm vững các bước giải phương trình chứa ẩn ở mẫu, cũng như rèn 
luyện kỹ năng làm bài của các em. 
*Yêu cầu 
- Học sinh cần xem lại cách tìm ĐKXĐ, các quy đồng mẫu thức, các cách phân tích 
đa thức thành nhân tử, để áp dụng vào dạng toán này. 
 - Các em xem thật kỹ các ví dụ thầy giải bên dưới, dựa vào đó, các em làm các bài 
tập còn lại, nọp lên cho thầy trước 18/2/1016. 
I. Phương pháp 
Để giải một bài toán dạng này ta làm theo các bước sau: 
 Bước 1: Tìm điều kiện xác định của phương trình. 
 Bước 2: Qui đồng mẫu hai vế của phương trình, rồi khử mẫu. 
 Bước 3: Giải phương trình vừa nhân được. 
 Bước 4: (Kết luận) Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thoả mãn 
điều kiện xác định chính là các nghiệm của phương trình đã cho. 
II. Áp dụng và bài tập tương tự. 
1. Dạng mẫu thức không cân phân tích thành nhân tử. 
a. Ví dụ: Giải phương trình x x
x x
2 5 0
2 5

 

Hướng dẫn: Ta giải bài toán này theo phương pháp ở phần I phía trên. 
Bước 1: Tìm điều kiện xác định của phương trình. 
Chúng ta quan sát các mẫu thức, mẫu thức nào chứa ẩn thì tìm điều kiện xác định 
cho nó: ĐKXĐ: 
5 0 5
2 0 0
x x
x x
    
 
  
Bước 2: Qui đồng mẫu hai vế của phương trình, rồi khử mẫu. 
Ở bước này các em cần nhớ lại phương pháp quy đồng mẫu thức ở chương 2, tức là 
chúng ta đi tìm mẫu thức chung. 
MTC:  2 5x x  
+ Quy đồng mẫu thức các phân thức của 2 vế, tức là nhân tử và mẫu của từng 
phân thức cho nhân tử phụ để được mẫu thức giống như mẫu thức chung ở trên. 
Trần Hữu Nghị 
 
 
 
x x x x
x(x x x
(2 5)( 5) .2 0
2 5) ( 5).2
+ Khử mẫu 
Ta được      x x x x2 5 5 .2 0 
Bước 3: Giải phương trình vừa nhân được. 
2 22 5 5 25 2 0
10 25
25
10
5
2
x x x x
x
x
x
     
 




Bước 4: (Kết luận) Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thoả mãn 
điều kiện xác định chính là các nghiệm của phương trình đã cho 
5
2
x

 (nhận) 
Tức là theo đkxđ ở bước 1 thì 5
2
x

 thõa điều kiện 
5 0 5
2 0 0
x x
x x
    
 
  
Vậy tập nghiệm của phương trình là 
5
2
S
   
 
*Lưu ý: Các em có thể giải bài toàn này một các ngắn gọn hơn, nhưng phải đầy 
đủ các bước như sau: 
Ta có: x x
x x
2 5 0
2 5

 

ĐKXĐ: 
5 0 5
2 0 0
x x
x x
    
 
  
MTC:  2 5x x  
Khi đó: x x
x x
2 5 0
2 5

 

 
  
 
x x x x
x(x x x
(2 5)( 5) .2 0
2 5) ( 5).2
      x x x x2 5 5 .2 0 
Trần Hữu Nghị 
2 22 5 5 25 2 0
10 25
25
10
x x x x
x
x
     
 


 5
2
x

 (nhận) 
b. Bài tập tương tự: Giải các phương trình sau: 
 a) x
x
4 3 29
5 3



 b) x
x
2 1 2
5 3



 c) x x
x x
4 5 2
1 1

 
 
 d) 
x x
7 3
2 5

 
 e)
x x x
11 9 2
1 4
 
 
 f) x x x
x
12 1 10 4 20 17
11 4 9 18
  
 

2. Dạng mẫu thức phải phân thức thành nhân tử. 
a. Ví dụ: giải phương trinh sau 
 
2
2 2 2 3 2
0
25 5 5
x x x
x x x
 
  
  
Giải 
Để giải phương trình này trước hết ta cần phân tích các mẫu thức thành nhân tử. 
Khi đó ta được:
 
2
2 2 2 3 2
0
25 5 5
x x x
x x x
 
  
  
 
  
2 2 2 3 2
0
5 5 5 5
x x x
x x x x
 
   
   
Sau khi phân tích các mẫu thành nhân tử xong ta cũng làm theo phương pháp ở I. 
Bước 1: ĐKXĐ:
5 0 5
5 0 5
x x
x x
   
 
    
( lưu ý các mẫu có đa thức giống nhau ta chỉ lấy 
một) 
Bước 2: MTC:    5 5x x  . Tiến hành quy đồng mẫu thức và khữ mẫu 
Ta được: 
 
  
2 2 2 3 2
0
5 5 5 5
x x x
x x x x
 
  
   
 
  
2 2
2 2 (2 3)( 5) 2( 5)
0
5 5 ( 5)( 5) ( 5)( 5)
(2 4 ) (2 10 3 10) (2 10) 0
x x x x x
x x x x x x
x x x x x x
   
   
     
        
Bước 3: Giải phương trình vừa nhận được 
Trần Hữu Nghị 
2 22 4 2 10 3 10 2 10 0
7 20 0
20
7
x x x x x x
x
x
        
  
 
Bước 4: Kết hợp với ĐKXĐ ta thấy 20
7
x  thỏa điều kiện 
 20
7
x  (nhận) 
Vậy tập nghiệm của phương trình là 
20
7
S    
 
*Lưu ý: Các em có thể giải phương trình này theo cách ngắn gọn hơn. 
b. Bài tập tương tự 
Bài 1. Giải các phương trình sau: 
a) x
x x x
14 2 3 5
3 12 4 8 2 6

  
  
 c) 
x x
x xx2
12 1 3 1 3
1 3 1 31 9
 
 
 
 d) 
x x x
x x x x x2 2 2
5 25 5
5 2 50 2 10
  
 
  
 e) 
x x
x x x2
1 1 16
1 1 1
 
 
  
 f) 
x x xx
x x x
1 1 11 ( 2)
1 1 1
   
    
   
Bài 2. Giải các phương trình sau: 
 a) 
x
x xx x2
6 1 5 3
2 57 10

 
  
 b) 
x x
x x x xx2
2 1 4 0
( 2) ( 2)4
 
  
 
 c) x x
x x x x x
2
2
1 1 ( 1)
3 1 3 2 3

  
    
 d) 
x x x x2
1 6 5
2 3 6
 
   
 e) x
x x x x
2
3 2
2 2 16 5
2 8 2 4

 
   
 f) x x x
x x x x x
2
2 2 6
1 1 2( 2)
1 1 1
  
 
    
Bài 3. Giải các phương trình sau: 
 a) 
x x x x
8 11 9 10
8 11 9 10
  
   
 b) x x x x
x x x x3 5 4 6
  
   
 c) 
x x x x2 2
4 3 1 0
3 2 2 6 1
  
   
 d) 
x x x x
1 2 3 6
1 2 3 6
  
   

Tài liệu đính kèm:

  • pdfchu_de_giai_phuong_trinh_chua_an_o_mau.pdf