Dưỡng học sinh giỏi Toán 8 - Chuyên đề 1: Số chính phương

I. ĐỊNH NGHĨA: Số chính phương là số bằng bình phương đúng của một số nguyên.

II. TÍNH CHẤT:

1. Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9 ; không thể có chữ số tận cùng bằng 2, 3, 7, 8.

2. Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn.

3. Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n + 1. Không có số chính phương nào có dạng 4n + 2 hoặc 4n + 3 (n N).

4. Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n + 1. Không có số chính phương nào có dạng 3n + 2 (n N).

5. Số chính phương tận cùng bằng 1 hoặc 9 thì chữ số hàng chục là chữ số chẵn.

Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2

Số chính phương tận cùng bằng 4 thì chữ số hàng chục là chữ số chẵn.

Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.

6. Số chính phương chia hết cho 2 thì chia hết cho 4.

 Số chính phương chia hết cho 3 thì chia hết cho 9.

 Số chính phương chia hết cho 5 thì chia hết cho 25.

 Số chính phương chia hết cho 8 thì chia hết cho 16.

 

doc 31 trang Người đăng phammen30 Lượt xem 2037Lượt tải 1 Download
Bạn đang xem 20 trang mẫu của tài liệu "Dưỡng học sinh giỏi Toán 8 - Chuyên đề 1: Số chính phương", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
bcd vừa là số chính phương vừa là một lập phương nên đặt abcd = x2 = y3 Với x, y N
Vì y3 = x2 nên y cũng là một số chính phương .
Ta có 1000 ≤ abcd ≤ 9999 10 ≤ y ≤ 21 và y chính phương y = 16
 abcd = 4096
 Bài 5: Tìm một số chính phương gồm 4 chữ số sao cho chữ số cuối là số nguyên tố, căn bậc hai của số đó có tổng các chữ số là một số chính phương.
Gọi số phải tìm là abcd với a, b, c, d nguyên và 1 ≤ a ≤ 9 ; 0 ≤ b,c,d ≤ 9
abcd chính phương d{ 0,1,4,5,6,9}
d nguyên tố d = 5
Đặt abcd = k2 < 10000 32 ≤ k < 100
k là một số có hai chữ số mà k2 có tận cùng bằng 5 k tận cùng bằng 5
Tổng các chữ số của k là một số chính phương k = 45
 abcd = 2025
Vậy số phải tìm là 2025
Bài 6: Tìm số tự nhiên có hai chữ số biết rằng hiệu các bình phương của số đó và viết số bởi hai chữ số của số đó nhưng theo thứ tự ngược lại là một số chính phương
Gọi số tự nhiên có hai chữ số phải tìm là ab ( a,b N, 1 ≤ a,b ≤ 9 )
2
2
Số viết theo thứ tự ngược lại ba 
Ta có ab - ba = ( 10a + b ) 2 – ( 10b + a )2 = 99 ( a2 – b2 ) 11 a2 - b2 11
Hay ( a-b )(a+b ) 11 
2
2
Vì 0 < a - b ≤ 8 , 2 ≤ a+b ≤ 18 nên a+b 11 a + b = 11
2
2
Khi đó ab - ba = 32 . 112 . (a - b)
Để ab - ba là số chính phương thì a - b phải là số chính phương do đó a-b = 1 hoặc a - b = 4
Nếu a-b = 1 kết hợp với a+b = 11 a = 6, b = 5, ab = 65
 Khi đó 652 – 562 = 1089 = 332
Nếu a - b = 4 kết hợp với a+b = 11 a = 7,5 ( loại )
Vậy số phải tìm là 65
Bài 7: Cho một số chính phương có 4 chữ số. Nếu thêm 3 vào mỗi chữ số đó ta cũng được một số chính phương. Tìm số chính phương ban đầu 
 ( Kết quả: 1156 )
Bài 8: Tìm số có 2 chữ số mà bình phương của số ấy bằng lập phương của tổng các chữ số của nó. 
2
Gọi số phải tìm là ab với a,b N và 1 ≤ a ≤ 9 , 0 ≤ b ≤ 9
Theo giả thiết ta có : ab = ( a + b )3 
 (10a+b)2 = ( a + b )3
 ab là một lập phương và a+b là một số chính phương
Đặt ab = t3 ( t N ) , a + b = l 2 ( l N )
Vì 10 ≤ ab ≤ 99 ab = 27 hoặc ab = 64
Nếu ab = 27 a + b = 9 là số chính phương 
Nếu ab = 64 a + b = 10 không là số chính phương loại
 Vậy số cần tìm là ab = 27
Bài 9: Tìm 3 số lẻ liên tiếp mà tổng bình phương là một số có 4 chữ số giống nhau.
 Gọi 3 số lẻ liên tiếp đó là 2n-1, 2n+1, 2n+3 ( n N)
 Ta có A= ( 2n-1 )2 + ( 2n+1)2 + ( 2n+3 )2 = 12n2 + 12n + 11
 Theo đề bài ta đặt 12n2 + 12n + 11 = aaaa = 1111.a với a lẻ và 1 ≤ a ≤ 9
 12n( n + 1 ) = 11(101a – 1 )
 101a – 1 3 2a – 1 3
 Vì 1 ≤ a ≤ 9 nên 1 ≤ 2a-1 ≤ 17 và 2a-1 lẻ nên 2a – 1 { 3; 9; 15 }
 a { 2; 5; 8 }
 Vì a lẻ a = 5 n = 21
 3 số càn tìm là 41; 43; 45
Bài 10: Tìm số có 2 chữ số sao cho tích của số đó với tổng các chữ số của nó bằng tổng lập phương các chữ số của số đó.
 ab (a + b ) = a3 + b3
10a + b = a2 – ab + b2 = ( a + b )2 – 3ab
 3a( 3 + b ) = ( a + b ) ( a + b – 1 )
a + b và a + b – 1 nguyên tố cùng nhau do đó
 a + b = 3a hoặc 	a + b – 1 = 3a
 a + b – 1 = 3 + b a + b = 3 + b
 a = 4 , b = 8 hoặc a = 3 , b = 7
 Vậy ab = 48 hoặc ab = 37.
 Chuyên đề 2
A_ĐỒNG DƯ THỨC
1_Định nghĩa:
Cho là số nguyên dương. Hai số nguyên và được gọi là đồng dư với nhau theo module m nếu hiệu 
Ký hiệu được gọi là một đồng dư thức.
Nếu không chia hết cho , ta viết 
2_Các ví dụ:
Điều kiện nghĩa là a 
3_Một số tính chất cơ bản:
Tính chất 1:
Với mọi số nguyên , ta có: 
Tính chất 2:
Tính chất 3
Chứng minh:
Vì 
Tính chất 4
Chứng minh:
Tính chất 5
Chứng minh:
Theo tính chất 4 ta có: 
Nhân từng vế hai ĐT ta có:
Nhận xét
1, Nếu và thì
, và suy ra:
, còn 
Điều này có nghĩa : Tổng của hai số lẻ là một số chẵn; Tích của hai số lẻ là một số lẻ
2,Nếu
Có nghĩa: Nếu một số chia cho 7 dư 3 thì bình phương số đó chia 7 dư 2. 
Các hệ quả của tính chất 4 và 5:
,
3 , với 
Chú ý:
1_Chia hai vế cho một đẳng thức, nói chung là không được.
nhưng 
2 nhưng ab có thể đồng dư với 0 theo module m. Chẳng hạn : nhưng
Phép chia hai vế đồng dư thức đòi hỏi phải kèm thêm một số điều kiện 
Tính chất 6 Ta có thể chia hai vế của một đồng dư thức cho ước chung của chúng, nếu ước này nguyên tố với modun m
Tính chất 7 Ta có thể nhân hai vế và modun của đồng dư thức với một số nguyên dương
, với c>0
Ta có thể chia hai vế và modun của một đồng dư thức cho ước chung dương của chúng
Nếu d là ước chung dương của a,b và m thì 
với d>0 
Tính chất 8 (from sách )
Đa thức với các hệ số nguyên và nếu có thì 
Chuyên đề 3
Các phương pháp phân tích đa thức thành nhân tử
I.  CÁC PHƯƠNG PHÁP CƠ BẢN
1. Phương pháp đặt nhân tử chung
–       Tìm nhân tử chung là những đơn, đa thức có mặt trong tất cả các hạng tử.
–       Phân tích mỗi hạng tử thành tích của nhân tử chung và một nhân tử khác.
–     Viết nhân tử chung ra ngoài dấu ngoặc, viết các nhân tử còn lại của mỗi hạng tử vào trong dấu ngoặc (kể cả dấu của chúng).
Ví dụ 1. Phân tích các đa thức sau thành nhân tử.
28a2b2 - 21ab2 + 14a2b = 7ab(4ab - 3b + 2a)
2x(y – z) + 5y(z –y ) = 2(y - z) – 5y(y - z) = (y – z)(2 - 5y)
xm + xm + 3 = xm (x3 + 1) = xm( x+ 1)(x2 – x + 1)
2. Phương pháp dùng hằng đẳng thức
-       Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử.
-       Cần chú ý đến việc vận dụng hằng đẳng thức.
Ví dụ 2. Phân tích các đa thức sau thành nhân tử.
9x2 – 4 = (3x)2 – 22 = ( 3x– 2)(3x + 2)
8 – 27a3b6 = 23 – (3ab2)3 = (2 – 3ab2)( 4 + 6ab2  + 9a2b4)
25x4 – 10x2y + y2 = (5x2 – y)2
3. Phương pháp nhóm nhiều hạng tử
–       Kết hợp các hạng tử thích hợp thành từng nhóm.
–       Áp dụng liên tiếp các phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức.
Ví dụ 3. Phân tích các đa thức sau thành nhân tử
              2x3 – 3x2 + 2x – 3 = ( 2x3 + 2x) – (3x2 + 3) = 2x(x2 + 1) – 3( x2 + 1)
                                 = ( x2 + 1)( 2x – 3)
x2  – 2xy + y2 – 16 = (x – y)2 - 42 = ( x – y – 4)( x –y + 4)
4. Phối hợp nhiều phương pháp
-       Chọn các phương pháp theo thứ tự ưu tiên.
-       Đặt nhân tử chung.
-       Dùng hằng đẳng thức.
-       Nhóm nhiều hạng tử.
Ví dụ 4. Phân tích các đa thức sau thành nhân tử
              3xy2 – 12xy + 12x = 3x(y2 – 4y + 4) = 3x(y – 2)2
3x3y – 6x2y – 3xy3  – 6axy2 – 3a2xy + 3xy =
              = 3xy(x2 – 2y – y2 – 2ay – a2 + 1)
              = 3xy[( x2 – 2x + 1) – (y2 + 2ay + a2)]
              = 3xy[(x – 1)2 – (y + a)2]
              = 3xy[(x – 1) – (y + a)][(x – 1) + (y + a)]
              = 3xy( x –1 – y – a)(x – 1 + y + a)
II.  PHƯƠNG PHÁP TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ
1. Đối với đa thức bậc hai (f(x) = ax2 + bx + c)
a)    Cách 1 (tách hạng tử bậc nhất bx):
Bước 1: Tìm tích ac, rồi phân tích ac ra tích của hai thừa số nguyên bằng mọi cách.
a.c = a1.c1 = a2.c2 = a3.c3 =  = ai.ci = 
Bước 2: Chọn hai thừa số có tổng bằng b, chẳng hạn chọn tích a.c = ai.ci với b = ai + ci
Bước 3: Tách bx = aix + cix. Từ đó nhóm hai số hạng thích hợp để phân tích tiếp.
Ví dụ 5. Phân tích đa thức f(x) = 3x2 + 8x + 4 thành nhân tử.
Hướng dẫn
-       Phân tích ac = 12 = 3.4 = (–3).(–4) = 2.6 = (–2).(–6) = 1.12 = (–1).(–12)
-       Tích của hai thừa số có tổng bằng b = 8 là tích a.c = 2.6 (a.c = ai.ci).
-       Tách 8x = 2x + 6x (bx = aix + cix)
Lời giải
      3x2 + 8x + 4 = 3x2 + 2x + 6x + 4 = (3x2 + 2x) + (6x + 4)= x(3x + 2) + 2(3x + 2)
                        = (x + 2)(3x +2)
b)    Cách 2 (tách hạng tử bậc hai ax2)
-       Làm xuất hiện hiệu hai bình phương :
f(x) = (4x2 + 8x + 4) – x2 = (2x + 2)2 – x2 = (2x + 2 – x)(2x + 2 + x)
   = (x + 2)(3x + 2)
-       Tách thành 4 số hạng rồi nhóm :
f(x) = 4x2 – x2 + 8x + 4 = (4x2 + 8x) – ( x2 – 4) = 4x(x + 2) – (x – 2)(x + 2)
          = (x + 2)(3x + 2)
   f(x) = (12x2 + 8x) – (9x2 – 4) =  = (x + 2)(3x + 2)
c)     Cách 3 (tách hạng tử tự do c)
-       Tách thành 4 số hạng rồi nhóm thành hai nhóm:
   f(x) = 3x2 + 8x + 16 – 12 = (3x2 – 12) + (8x + 16) =  = (x + 2)(3x + 2)
d)    Cách 4 (tách 2 số hạng, 3 số hạng)
        f(x) = (3x2 + 12x + 12) – (4x + 8) = 3(x + 2)2 – 4(x + 2) = (x + 2)(3x – 2)
        f(x) = (x2 + 4x + 4) + (2x2 + 4x) =  = (x + 2)(3x + 2)
e)     Cách 5 (nhẩm nghiệm): Xem phần III.
Chú ý : Nếu f(x) = ax2 + bx + c có dạng A2 ± 2AB + c thì ta tách như sau :
                 f(x) = A2 ± 2AB + B2 – B2 + c = (A ± B)2 – (B2 – c)
Ví dụ 6. Phân tích đa thức f(x) = 4x2 - 4x - 3 thành nhân tử.
Hướng dẫn
Ta thấy 4x2 - 4x = (2x)2 - 2.2x. Từ đó ta cần thêm và bớt 12 = 1 để xuất hiện hằng đẳng thức.
Lời giải
f(x) = (4x2 – 4x + 1) – 4 = (2x – 1)2 – 22 = (2x – 3)(2x + 1)
Ví dụ 7. Phân tích đa thức f(x) = 9x2 + 12x – 5 thành nhân tử.
Lời giải
Cách 1 : f(x) = 9x2 – 3x + 15x – 5 = (9x2 – 3x) + (15x – 5) = 3x(3x –1) + 5(3x – 1)
               = (3x – 1)(3x + 5)
    Cách 2 : f(x) = (9x2 + 12x + 4) – 9 = (3x + 2)2 – 32 = (3x – 1)(3x + 5)
2. Đối với đa thức bậc từ 3 trở lên (Xem mục III. Phương pháp nhẩm nghiệm)
3. Đối với đa thức nhiều biến
Ví dụ 11. Phân tích các đa thức sau thành nhân tử
a)     2x2 - 5xy + 2y2 ;
b)    x2(y - z) + y2(z - x) + z2(x - y).
Hướng dẫn
a)     Phân tích đa thức này tương tự như phân tích đa thức f(x) = ax2 + bx + c.
Ta tách hạng tử thứ 2 :
2x2 - 5xy + 2y2 = (2x2 - 4xy) - (xy - 2y2) = 2x(x - 2y) - y(x - 2y)
= (x - 2y)(2x - y)
a)     Nhận xét z - x = -(y - z) - (x - y). Vì vậy ta tách hạng tử thứ hai của đa thức :
x2(y - z) + y2(z - x) + z2(x - y) = x2(y - z) - y2(y - z) - y2(x - y) + z2(x - y) =
= (y - z)(x2 - y2) - (x - y)(y2 - z2) = (y - z)(x - y)(x + y) - (x - y)(y - z)(y + z)
= (x - y)(y - z)(x - z)
Chú ý :
1) Ở câu b) ta có thể tách y - z = - (x - y) - (z - x) (hoặc z - x= - (y - z) - (x - y))
2) Đa thức ở câu b) là một trong những đa thức có dạng đa thức đặc biệt. Khi ta thay x = y (y = z hoặc  z = x) vào đa thức thì giá trị của đa thức bằng 0. Vì vậy, ngoài cách phân tích bằng cách tách như trên, ta còn cách phân tích bằng cách xét giá trị riêng (Xem phần VII).
III.  PHƯƠNG PHÁP NHẨM NGHIỆM
Trước hết, ta chú ý đến một định lí quan trọng sau :
        Định lí : Nếu f(x) có nghiệm x = a thì f(a) = 0. Khi đó, f(x) có một nhân tử là x – a và f(x) có thể viết dưới dạng f(x) = (x – a).q(x)
        Lúc đó tách các số hạng của f(x) thành các nhóm, mỗi nhóm đều chứa nhân tử là        x – a. Cũng cần lưu ý rằng, nghiệm nguyên của đa thức, nếu có, phải là một ước của hệ số tự do.
        Ví dụ 8. Phân tích đa thức f(x) = x3 + x2 + 4 thành nhân tử.
Lời giải
        Lần lượt kiểm tra với x = ± 1, ± 2,  4, ta thấy f(–2) = (–2)3 + (–2)2 + 4 = 0. Đa thức f(x) có một nghiệm x = –2, do đó nó chứa một nhân tử là x + 2. Từ đó, ta tách như sau
Cách 1 : f(x) = x3 + 2x2 – x2 + 4 = (x3 + 2x2) – (x2 – 4) = x2(x + 2) – (x – 2)(x + 2)
                   = (x + 2)(x2 – x + 2).
Cách 2 : f(x) = (x3 + 8) + (x2 – 4) = (x + 2)(x2 – 2x + 4) + (x – 2)(x + 2)
                   = (x + 2)(x2 – x + 2).
Cách 3 : f(x) = (x3 + 4x2 + 4x) – (3x2 + 6x) + (2x + 4)
                 = x(x + 2)2 – 3x(x + 2) + 2(x + 2) = (x + 2)(x2 – x + 2).
Cách 4 : f(x) = (x3 – x2 + 2x) + (2x2 – 2x + 4) = x(x2 – x + 2) + 2(x2 – x + 2)
                   = (x + 2)(x2 – x + 2).
        Từ định lí trên, ta có các hệ quả sau :
Hệ quả 1. Nếu f(x) có  tổng các hệ số bằng 0 thì f(x) có một nghiệm là x = 1. Từ đó f(x) có một nhân tử là x – 1.
Chẳng hạn, đa thức x3 – 5x2 + 8x – 4 có 1 + (–5) + 8 + (–4) = 0 nên x = 1 là một nghiệm của đa thức. Đa thức có một nhân tử là x – 1. Ta phân tích như sau :
f(x) = (x3 – x2) – (4x2 – 4x) + (4x – 4) = x2(x – 1) – 4x(x – 1) + 4(x – 1)
     = (x – 1)( x – 2)2
Hệ quả 2. Nếu f(x) có tổng các hệ số của các luỹ thừa bậc chẵn bằng tổng các hệ số của các luỹ thừa bậc lẻ thì f(x) có một nghiệm x = –1. Từ đó f(x) có một nhân tử là  x + 1.
Chẳng hạn, đa thức x3 – 5x2 + 3x + 9 có 1 + 3 = –5 + 9 nên x = –1 là một nghiệm của đa thức. Đa thức có một nhân tử là x + 1. Ta phân tích như sau :
f(x) = (x3 + x2) – (6x2 + 6x) + (9x + 9) = x2(x + 1) – 6x(x + 1) + 9(x + 1)
              = (x + 1)( x – 3)2
 Hệ quả 3. Nếu f(x) có nghiệm nguyên x = a và f(1) và f(–1) khác 0 thì và đều là số nguyên.
Ví dụ 9. Phân tích đa thức f(x) = 4x3 - 13x2 + 9x - 18 thành nhân tử.
Hướng dẫn
Các ước của 18 là ± 1, ± 2, ± 3, ± 6, ± 9, ± 18.
f(1) = –18, f(–1) = –44, nên ± 1 không phải là nghiệm của f(x).
Dễ thấy  không là số nguyên nên –3, ± 6, ± 9, ± 18 không là nghiệm của f(x). Chỉ còn –2 và 3. Kiểm tra ta thấy 3 là nghiệm của f(x). Do đó, ta tách các hạng tử như sau :
               = (x – 3)(4x2 – x + 6)
Hệ quả 4. Nếu  (là các số nguyên) có nghiệm hữu tỉ  , trong đó p, q  Z và (p , q)=1, thì p là ước a0, q là ước dương của an .
Ví dụ 10. Phân tích đa thức f(x) = 3x3 - 7x2 + 17x - 5 thành nhân tử.
Hướng dẫn
        Các ước của –5 là ± 1, ± 5. Thử trực tiếp ta thấy các số này không là nghiệm của f(x). Như vậy f(x) không có nghiệm nghuyên. Xét các số , ta thấy  là nghiệm của đa thức, do đó đa thức có một nhân tử là 3x – 1. Ta phân tích như sau :
        f(x) = (3x3 – x2) – (6x2 – 2x) + (15x – 5) = (3x – 1)(x2 – 2x + 5).
IV.  PHƯƠNG PHÁP THÊM VÀ BỚT CÙNG MỘT HẠNG TỬ
1. Thêm và bớt cùng một hạng tử làm xuất hiện hiệu hai bình ph ương
        Ví dụ 12. Phân tích đa thức x4 + x2 + 1 thành nhân tử
Lời giải
Cách 1 : x4 + x2 + 1 = (x4 + 2x2 + 1) – x2 = (x2 + 1)2 – x2 = (x2 – x + 1)(x2 + x + 1).
        Cách 2 : x4 + x2 + 1 = (x4 – x3 + x2) + (x3 + 1) = x2(x2 – x + 1) + (x + 1)(x2 – x + 1)
                                    = (x2 – x + 1)(x2 + x + 1).
Cách 3 : x4 + x2 + 1 = (x4 + x3 + x2) – (x3 – 1) = x2(x2 + x + 1) + (x – 1)(x2 + x + 1)
                                    = (x2 – x + 1)(x2 + x + 1).
Ví dụ 13. Phân tích đa thức x4 + 16 thành nhân tử
Lời giải
Cách 1 : x4 + 4 = (x4 + 4x2 + 4) – 4x2 = (x2 + 2)2 – (2x)2 = (x2 – 2x + 2)(x2 + 2x + 2)
Cách 2 : x4 + 4 = (x4 + 2x3 + 2x2) – (2x3 + 4x2 + 4x) + (2x2 + 4x + 4)
                         = (x2 – 2x + 2)(x2 + 2x + 2)
2. Thêm và bớt cùng một hạng tử làm xuất hiện nhân tử chung
        Ví dụ 14. Phân tích đa thức x5 + x - 1 thành nhân tử
Lời giải
        Cách 1.
x5 + x - 1 = x5 - x4 + x3 + x4 - x3 + x2 - x2 + x - 1
 = x3(x2 - x + 1) - x2(x2 - x + 1) - (x2 - x + 1)
 = (x2 - x + 1)(x3 - x2 - 1).
Cách 2. Thêm và bớt x2 :
x5 + x - 1 = x5 + x2 - x2 + x - 1 = x2(x3 + 1) - (x2 - x + 1)
 = (x2 - x + 1)[x2(x + 1) - 1] = (x2 - x + 1)(x3 - x2 - 1).
Ví dụ 15. Phân tích đa thức x7 + x + 1 thành nhân tử
Lời giải
x7 + x2 + 1 = x7 – x + x2 + x + 1 = x(x6 – 1) + (x2 + x + 1)
                         = x(x3 – 1)(x3 + 1) + (x2+ x + 1)                    
  = x(x3 + 1)(x - 1)(x2 + x + 1) + ( x2 + x + 1)
                         = (x2 + x + 1)(x5 - x4 – x2  - x + 1)
Lưu ý : Các đa thức dạng  x3m + 1 + x3n + 2 + 1 như x7 + x2 + 1, x4 + x5 + 1 đều chứa nhân tử là x2 + x + 1.
V.  PHƯƠNG PHÁP ĐỔI BIẾN
Đặt ẩn phụ để đưa về dạng tam thức bậc hai  rồi sử dụng các phương pháp cơ bản.
Ví dụ 16. Phân tích đa thức sau thành nhân tử :
x(x + 4)(x + 6)(x + 10) + 128
Lời giải
x(x + 4)(x + 6)(x + 10) + 128 = (x2 + 10x)(x2 + 10x + 24) + 128
Đặt x2 + 10x + 12 = y, đa thức đã cho có dạng :
        (y - 12)(y + 12) + 128 = y2 - 16 = (y + 4)(y - 4) = (x2 + 10x + 16)(x2 + 10x + 8)
                                         = (x + 2)(x + 8)(x2 + 10x + 8)
        Nhận xét: Nhờ phương pháp đổi biến ta đã đưa đa thức bậc 4 đối với x thành đa thức bậc 2 đối với y.
        Ví dụ 17. Phân tích đa thức sau thành nhân tử :
A = x4 + 6x3 + 7x2 - 6x + 1.
Lời giải
        Cách 1. Giả sử x ≠ 0. Ta viết đa thức dưới dạng :
        .
        Đặt  thì . Do đó :
        A = x2(y2 + 2 + 6y + 7) = x2(y + 3)2 = (xy + 3x)2
            =  = (x2 + 3x - 1)2.
        Dạng phân tích này cũng đúng với x = 0.
        Cách 2. A = x4 + 6x3 - 2x2 + 9x2 - 6x + 1 = x4 + (6x3 -2x2) + (9x2 - 6x + 1)
   = x4 + 2x2(3x - 1) + (3x - 1)2 = (x2 + 3x - 1)2.
VI.  PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH
        Ví dụ 18. Phân tích đa thức sau thành nhân tử :
x4 - 6x3 + 12x2 - 14x - 3
Lời giải
        Thử với x= ±1; ±3 không là nghiệm của đa thức, đa thức không có nghiệm nguyên cũng không có nghiệm hữu tỷ. Như vậy đa thức trên phân tích được thành nhân tử thì phải có dạng
(x2 + ax + b)(x2 + cx + d) = x4 +(a + c)x3 + (ac+b+d)x2 + (ad+bc)x + bd
                                       = x4 - 6x3 + 12x2 - 14x + 3.
        Đồng nhất các hệ số ta được :
        Xét bd= 3 với b, d Î Z, b Î {± 1, ± 3}. Với b = 3 thì d = 1, hệ điều kiện trên trở thành
  2c = -14 - (-6) = -8. Do đó c = -4, a = -2.
Vậy x4 - 6x3 + 12x2 - 14x + 3     = (x2 - 2x + 3)(x2 - 4x + 1).
VII.  PHƯƠNG PHÁP XÉT GIÁ TRỊ RIÊNG
        Trong phương pháp này, trước hết ta xác định dạng các nhân tử chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định các nhân tử còn lại.
        Ví dụ 19. Phân tích đa thức sau thành nhân tử :
P = x2(y – z) + y2(z – x) + z(x – y).
Lời giải
  Thay x bởi y thì P = y2(y – z) + y2( z – y) = 0. Như vậy P chứa thừa số (x – y).
  Ta thấy nếu thay x bởi y, thay y bởi z, thay z bởi x thì p không đổi (đa thức P có thể hoán vị vòng quanh). Do đó nếu P đã chứa thừa số (x – y) thì cũng chứa thừa số (y – z),   (z – x). Vậy P có dạng k(x – y)(y – z)(z – x).
  Ta thấy k phải là hằng số vì P có bậc 3 đối với tập hợp các biến x, y, z, còn tích         (x – y)(y – z)(z – x) cũng có bậc 3 đối với tập hợp các biến x, y, z.
  Vì đẳng thức  x2(y – z) + y2(z – x) + z2(x – y) = k(x – y)(y – z)(z – x) đúng với mọi x, y, z nên ta gán cho các biến x ,y, z các giá trị riêng, chẳng hạn x = 2, y = 1, z = 0 ta được:
4.1 + 1.(–2) + 0 = k.1.1.(–2)  suy ra k =1
  Vậy P = –(x – y)(y – z)(z – x) = (x – y)(y – z)(x – z)
VIII.  PHƯƠNG PHÁP ĐƯA VỀ MỘT SỐ ĐA THỨC ĐẶC BIỆT
1. Đưa về đa thức : a3 + b3 + c3 - 3abc
        Ví dụ 20. Phân tích đa thức sau thành nhân tử :
a)     a3 + b3 + c3 - 3abc.
b)    (x - y)3 + (y - z)3 + (z - x)3.
Lời giải
a)     a3 + b3 + c3 - 3abc = (a + b)3 - 3a2b - 3ab2 + c3 - 3abc
= [(a + b)3 + c3] - 3ab(a + b + c)
= (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c)
= (a + b + c)(a2 + b2 + c2 - ab - bc -ca)
b)    Đặt  x - y = a, y - z = b, z - x = c thì a + b + c. Theo câu a) ta có :
a3 + b3 + c3 - 3abc = 0 Þ a3 + b3 + c3 = 3abc.
        Vậy (x - y)3 + (y - z)3 + (z - x)3 = 3(x - y)(y - z)(z - x)
2. Đưa về đa thức : (a + b + c)3 - a3 - b3 - c3
        Ví dụ 21. Phân tích đa thức sau thành nhân tử :
a)     (a + b + c)3 - a3 - b3 - c3.
b)    8(x + y + z)3 - (x + y)3 - (y + z)3 - (z + x)3.
Lời giải
a)     (a + b + c)3 - a3 - b3 - c3 = [(a + b) + c]3 - a3 - b3 - c3
= (a + b)3 + c3 + 3c(a + b)(a + b + c) - a3 - b3 - c3
= (a + b)3 + 3c(a + b)(a + b + c) - (a + b)(a2 - ab + b2)
= (a + b)[(a + b)2 + 3c(a + b + c) - (a2 - ab + b2)]
= 3(a + b)(ab + bc + ca + c2) = 3(a + b)[b(a + c) + c(a + c)]
= 3(a + b)(b + c)(c + a).
b)                Đặt x + y = a, y + z = b, z + x = c thì a + b + c = 2(a + b + c).
Đa thức đã cho có dạng : (a + b + c)3 - a3 - b3 - c3
Theo kết quả câu a) ta có :
(a + b + c)3 - a3 - b3 - c3 = 3(a + b)(b + c)(c + a)
Hay 8(x + y + z)3 - (x + y)3 - (y + z)3 - (z + x)3
= 3(x + 2y + z)(y + 2z + x)(z + 2x + y)
II. Bài tập: 
Bài tập 1: Phân tích đa thức thành nhân tử.
1.
16x3y + 0,25yz3
21.
(a + b + c)2 + (a + b – c)2 – 4c2
2.
x 4 – 4x3 + 4x2
22.
4a2b2 – (a2 + b2 – c2)2
3.
2ab2 – a2b – b3
23.
a 4 + b4 + c4 – 2a2b2 – 2b2c2 – 2a2c2
4.
a 3 + a2b – ab2 – b3
24.
a(b3 – c3) + b(c3 – a3) + c(a3 – b3)
5.
x 3 + x2 – 4x - 4
25.
a 6 – a4 + 2a3 + 2a2
6.
x 3 – x2 – x + 1
26.
(a + b)3 – (a – b)3
7.
x 4 + x3 + x2 - 1
27.
X 3 – 3x2 + 3x – 1 – y3
8.
x 2y2 + 1 – x2 – y2
28.
X m + 4 + xm + 3 – x - 1
10.
x 4 – x2 + 2x - 1
29.
(x + y)3 – x3 – y3
11.
3a – 3b + a2 – 2ab + b2
30.
(x + y + z)3 – x3 – y3 – z3
12.
a 2 + 2ab + b2 – 2a – 2b + 1
31.
(b – c)3 + (c – a)3 + (a – b)3
13.
a 2 – b2 – 4a + 4b
32.
x3 + y3+ z3 – 3xyz
14.
a 3 – b3 – 3a + 3b
33.
(x + y)5 – x5 – y5
15.
x 3 + 3x2 – 3x - 1
34.
(x2 + y2)3 + (z2 – x2)3 – (y2 + z2)3
16.
x 3 – 3x2 – 3x + 1
17.
x 3 – 4x2 + 4x - 1
18.
4a2b2 – (a2 + b2 – 1)2
19.
(xy + 4)2 – (2x + 2y)2
20.
(a2 + b2 + ab)2 – a2b2 – b2c2 – c2a2
Bài tập 2: Phân tích đa thức thành nhân tử.
1.
x2 – 6x + 8
23.
x3 – 5x2y – 14xy2
2.
x2 – 7xy + 10y2
24.
x4 – 7x2 + 1
3.
a2 – 5a - 14
25.
4x4 – 12x2 + 1
4.
2m2 + 10m + 8
26.
x2 + 8x + 7
5.
4p2 – 36p + 56
27.
x2 – 13x + 36
6.
x3 – 5x2 – 14x
28.
x2 + 3x – 18
7.
a4 + a2 + 1
29.
x2 – 5x – 24
8.
a4 + a2 – 2
30.
3x2 – 16x + 5
9.
x4 + 4x2 + 5
31.
8x2 + 30x + 7
10.
x3 – 10x - 12
32.
2x2 – 5x – 12
11.
x3 – 7x - 6
33.
6x2 – 7x – 20
12.
x2 – 7x + 12
34.
x2 – 7x + 10
13.
x2 – 5x – 14
35.
x2 – 10x + 16
14.
4 x2 – 3x – 1
36.
3x2 – 14x + 11
15.
3 x2 – 7x + 4
37.
5x2 + 8x – 13
16.
2 x2 – 7x + 3
38.
x2 + 19x + 60
17.
6x3 – 17x2 + 14x – 3
39.
x4 + 4x2 - 5
18.
4x3 – 25x2 – 53x – 24
40.
x3 – 19x + 30
19.
x4 – 34x2 + 225
41.
x3 + 9x2 + 26x + 24
20.
4x4 – 37x2 + 9
42.
4x2 – 17xy + 13y2
21.
x4 + 3x3 + x2 – 12x - 20
43.
- 7x2 + 5xy + 12y2
22.
2x4 + 5x3 + 13x2 + 25x + 15
44.
x3 + 4x2 – 31x - 70
Bài tập 3: Phân tích đa thức thành nhân tử.
1.
x4 + x2 + 1
17.
x5 -  x4 - 1
2.
x4 – 3x2 + 9
18.
x12 – 3x6 + 1
3.
x4 + 3x2 + 4
19.
x8 - 3x4 + 1
4.
2x4 – x2 – 1
20.
a5 + a4 + a3 + a2 + a + 1
5.
x4y4 + 4
21.
m3 – 6m2 + 11m - 6
6.
x4y4 + 64
22.
x4 + 6x3 + 7x2 – 6x + 1
7.
4 x4y4 + 1
23.
x3 + 4x2 – 29x + 24
8.
32x4 + 1
24.
x10 + x8 + x6 + x4 + x2 + 1
9.
x4 + 4y4
25.
x7 + x5 + x4 + x3 + x2 + 1
10.
x7 + x2 + 1
26.
x5 – x4 – x3 – x2 – x - 2
11.
x8 + x + 1
27.
x8 + x6 + x4 + x2 + 1
12.
x8 + x7 + 1
28.
x9 – x7 – x6 – x5 + x4 + x3 + x2 + 1
13.
x8 + 3x4 + 1
29.
a(b3 – c3) + b(c3 – a3) + c(a3 – b3)
14.
x10 + x5 + 1
15.
x5 + x + 1
16.
x5 + x4 + 1
Bài tập 4: Phân tích đa thức thành nhân tử.
1.    x2 + 2xy – 8y2 + 2xz + 14yz – 3z2
2.    3x2 – 22xy – 4x + 8y + 7y2 + 1
3.    12x2 + 5x – 12y2 + 12y – 10xy – 3
4.    2x2 – 7xy + 3y2 + 5xz – 5yz + 2z2

Tài liệu đính kèm:

  • doctai_lieu_boi_duong_hoc_sinh_gioi_toan_8.doc