Giáo án Đại số 6 - Buổi 1 + 2: Chuyên đề: Phép cộng và phép nhân - Phép trừ và phép chia

A.MỤC TIÊU

- Ôn tập lại các tính chất của phép cộng và phép nhân, phép trừ và phép chia.

- Rèn luyện kỹ năng vận dụng các tính chất trên vào các bài tập tính nhẩm, tính nhanh và giải toán một cách hợp lý.

- Vận dụng việc tìm số phần tử của một tập hợp đã được học trước vào một số bài toán.

- Hướng dẫn HS cách sử dụng máy tính bỏ túi.

- Giới thiệu HS về ma phương.

B. KIẾN THỨC

I. ÔN TẬP LÝ THUYẾT.

+ Phép cộng hai số tự nhiên bất kì luôn cho ta một số tự nhiên duy nhất gọi là tổng của

chúng.Tadùng dấu “+” để chỉ phép cộng:

Viết: a + b = c

( số hạng ) + (số hạng) = (tổng )

+)Phép nhân hai sốtự nhiên bất kìluôn cho ta một sốtự nhiên duy nhấtgọi là tích của chúng.

Tadùng dấu “.” Thay cho dấu “x” ở tiểuhọc để chỉ phép nhân.

Viết: a . b = c

(thừa số ) . (thừa số ) = (tích )

 

doc 7 trang Người đăng phammen30 Lượt xem 896Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Đại số 6 - Buổi 1 + 2: Chuyên đề: Phép cộng và phép nhân - Phép trừ và phép chia", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn : 10/09/2015
Ngày dạy: ..........................
Buổi 1+2: Chuyờn đề: PHéP CộNG Và PHéP NHÂN 
- PHéP TRừ Và PHéP CHIA
A.MụC TIÊU
- Ôn tập lại các tính chất của phép cộng và phép nhân, phép trừ và phép chia.
- Rèn luyện kỹ năng vận dụng các tính chất trên vào các bài tập tính nhẩm, tính nhanh và giải toán một cách hợp lý.
- Vận dụng việc tìm số phần tử của một tập hợp đã được học trước vào một số bài toán.
- Hướng dẫn HS cách sử dụng máy tính bỏ túi.
- Giới thiệu HS về ma phương.
B. Kiến thức 
I. Ôn tập lý thuyết.
+ Phép cộng hai số tự nhiên bất kì luôn cho ta một số tự nhiên duy nhất gọi là tổng của 
chúng.Tadùng dấu “+” để chỉ phép cộng: 
Viết: a + b = c 
( số hạng ) + (số hạng) = (tổng ) 
+)Phép nhân hai sốtự nhiên bất kìluôn cho ta một sốtự nhiên duy nhấtgọi là tích của chúng. 
Tadùng dấu “.” Thay cho dấu “x” ở tiểuhọc để chỉ phép nhân. 
Viết: a . b = c 
(thừa số ) . (thừa số ) = (tích ) 
* Chú ý: Trong một tích nếu hai thừa số đều bằng số thì bắt buộc phải viết dấu nhân “.” Còn có một thừa số bằng số và một thừa số bằng chữ hoặc hai thừa số bằng chữ thì không cần viết dấu nhân “.” Cũng được .Ví dụ: 12.3 còn 4.x = 4x; a . b = ab. 
+) Tích của một số với 0 thì bằng 0, ngược lại nếu một tích bằng 0 thì một trong các thừa số của tích phải bằng 0. 
* TQ: Nếu a .b= 0thìa = 0 hoặc b = 0. 
+) Tính chất của phép cộng và phép nhân: 
a)Tính chất giaohoán: a + b= b+ a a . b= b.a 
Phát biểu: + Khi đổi chỗ các số hạng trong một tổngthìtổng không thay đổi. 
+ Khi đổi chỗ các thừa sốtrongtích thì tích không thay đổi. 
b)Tính chất kết hợp: ( a + b) +c = a+ (b+ c) (a .b). c =a .( b.c ) 
Phát biểu : + Muốn cộng một tổng hai số với một số thứ ba tacó thể công số thứ nhất với tổng của số thứhai và số thứ ba. 
+ Muốn nhân một tích hai số với một số thứ ba ta có thể nhân số thứ nhất với tích của số thứ hai và số thứ ba. 
c)Tính chất cộng với 0 và tính chất nhân với 1: a + 0 = 0+ a= a a . 1= 1.a = a 
d)Tính chất phân phối của phép nhân với phép cộng: a.(b+ c )= a.b+ a.c 
Phát biểu: Muốn nhân một số với một tổng ta nhân số đó với từng số hạng của tổng rồi cộng các kết quả lại 
* Chú ý: Khi tính nhanh, tính bằng cách hợp lí nhất ta cần chú ý vận dụng các tính chất trêncụ thể là: - Nhờ tính chất giao hoán và kết hợp nên trong một tổng hoặc một tích tacó thể thay đổi vị trí các số hạng hoặc thừa số đồng thời sử dụng dấu ngoặc để nhóm các số thích hợp với nhau rồi thực hiện phéptính trước. 
- Nhờ tính chất phân phối ta có thể thực hiện theo cách ngược lại gọi là đặt thừa số 
chung a. b + a. c = a. (b + c) 
Câu 1: Phép cộng và phép nhân có những tính chất cơ bản nào?
Câu 2: Phép trừ và phép chia có những tính chất cơ bản nào?
II. Bài tập
*.Dạng 1: Các bài toán tính nhanh
Bài 1: Tính tổng sau đây một cách hợp lý nhất.
a/ 67 + 135 + 33 b/ 277 + 113 + 323 + 87 ĐS: a/ 235	b/ 800
Bài 2: Tính nhanh các phép tính sau:
a/ 8 x 17 x 125 b/ 4 x 37 x 25 ĐS: a/ 17000	b/ 3700
Bài 3: Tính nhanh một cách hợp lí:
a/ 997 + 86 b/ 37. 38 + 62. 37 c/ 43. 11; 67. 101; 423. 1001 d/ 67. 99; 998. 34
Hướng dẫn
a/ 997 + (3 + 83) = (997 + 3) + 83 = 1000 + 80 = 1083
Sử dụng tính chất kết hợp của phép cộng.
Nhận xét: 997 + 86 = (997 + 3) + (86 -3) = 1000 + 83 = 1083. Ta có thể thêm vào số hạng này đồng thời bớt đi số hạng kia với cùng một số.
b/ 37. 38 + 62. 37 = 37.(38 + 62) = 37.100 = 3700.
Sử dụng tính chất phân phối của phép nhân đối với phép cộng.
c/ 43. 11 = 43.(10 + 1) = 43.10 + 43. 1 = 430 + 43 = 4373.
67. 101= 6767 423. 1001 = 423 423
d/ 67. 99 = 67.(100 – 1) = 67.100 – 67 = 6700 – 67 = 6633
998. 34 = 34. (100 – 2) = 34.100 – 34.2 = 3400 – 68 = 33 932
Bái 4: Tính nhanh các phép tính:
a/ 37581 – 9999 b/ 7345 – 1998 c/ 485321 – 99999 d/ 7593 – 1997
Hướng dẫn:
a/ 37581 – 9999 = (37581 + 1 ) – (9999 + 1) = 37582 – 10000 = 89999 (cộng cùng một số vào số bị trừ và số trừ
b/ 7345 – 1998 = (7345 + 2) – (1998 + 2) = 7347 – 2000 = 5347
c/ ĐS: 385322	
d/ ĐS: 5596
*) Tính nhanh tổng hai số bằng cách tách một số hạng thành hai số hạng rồi áp dụng tính chất kết hợp của phép cộng: 
VD: Tính nhanh: 97 + 24 = 97 + ( 3 + 21) = ( 97 + 3) + 21 = 100 + 21 = 121. 
Bài 4:Tính nhanh: 
a) 996 + 45 b) 37 + 198 c) 1998 + 234 d) 1994 +576 
Bài 5: (VN )Tính nhanh: 
a) 294 + 47 b) 597 + 78 c) 3985 + 26 d) 1996 + 455 
+) Tính nhanh tích hai số bằng cách tách một thừa số thành hai thừa số rồi áp dụng tính chất kết hợp của phép nhân: 
VD: Tính nhanh: 45. 6 = 45. ( 2. 3) = ( 45. 2). 3 = 90. 3 = 270. 
Bài 6:Tính nhanh: 
a) 15. 18 b) 25. 24 c) 125. 72 d) 55. 14 
Bài 7: (VN )Tính nhanh: 
a) 25. 36 b) 125. 88 c) 35. 18 d) 45. 12 
+)Tính nhanh tích hai số bằng cách tách một thừa số thành tổng hai số rồi áp dụng tính chất phân phối: 
VD: Tính nhanh: 45.6 = ( 40 + 5). 6 = 40. 6 + 5. 6 = 240 + 30 = 270. 
Bài 8:Tính nhanh: 
a) 25. 12 b) 34. 11 c) 47. 101 d) 15.302 
Bài 9: (VN)Tính nhanh: 
a) 125.18 b) 25.24 c) 34.201 d) 123. 1001 
+) Sử dụngtính chất giao hoán kết hợp của phép cộng để tính bằng cách hợp lí: 
VD:Thực hiện phép tính bằng cách hợp lí nhất: 
135 + 360 + 65 + 40 = (135 + 65) + ( 360 + 40) = 200 + 400 = 600. 
Bài 10:Thực hiện phép tính bằng cách hợp lí nhất: 
 a) 463 + 318 + 137 + 22 b) 189 + 424 +511 + 276 + 55 
 c) (321 +27) + 79 d) 185 +434 + 515 + 266 + 155 
Bài 11: (VN)Thực hiện phép tính bằng cách hợp lí nhất: 
 a) 168 + 79 + 132 b) 29 + 132 + 237 + 868 + 763 
 c) 652 + 327 + 148 + 15 + 73 d) 347 + 418 + 123 + 12 
+. Sử dụng tính chất giao hoán kết hợp của phép nhânđể tính bằngcách hợp línhất: 
VD: Tính bằng cách hợp lín hất: 
 5. 25. 2. 37. 4 = (5. 2). (25. 4). 37 = 10. 100. 37 = 37 000. 
Bài 1:Tính bằng cách hợp lí nhất: 
a) 5. 125. 2. 41. 8 b) 25. 7. 10. 4 c) 8. 12. 125. 2 d) 4. 36. 25. 50 
Bài 12: (VN)Tính bằng cách hợp lí nhất: 
 a) 72. 125. 3 b) 25. 5. 4. 27. 2 c) 9. 4. 25. 8. 125 d) 32. 46. 125. 25 
*. Sử dụng tính chất phân phối để tính nhanh: 
Chú ý: Quy tắc đặt thừa số chung : a. b+ a.c = a. (b+ c) hoặc a. b + a. c + a. d = a.(b + c + d) VD: Tính bằng cách hợp lí nhất: 
a) 28. 64 + 28. 36 = 28.(64 + 36 ) = 28. 100 = 2800 
b) 3. 25. 8 + 4. 37. 6 + 2. 38. 12 = 24. 25 + 24. 37 + 24. 38 = 24.(25 + 37 + 38 ) 
= 24. 100 = 2400 
Bài 13:Tính bằng cách hợp lí nhất: 
38. 63 + 37. 38 b) 12.53 + 53. 172– 53. 84
 c) 35.34 +35.38 + 65.75 + 65.45 
39.8 + 60.2 + 21.8
 36.28 + 36.82 + 64.69 + 64.41 
Bài 14: (VN)Tính bằng cách hợp lí nhất: 
32. 47 + 32. 53 b) 37.7 + 80.3 +43.7 
c) 113.38 + 113.62 + 87.62 + 87.38 
123.456 + 456.321 –256.444 
 43.37 + 93.43 + 57.61 + 69.57 
*.Dạng 2: Các bài toán có liên quan đến dãy số, tập hợp
1:Dãy số cách đều: VD: Tính tổng: S = 1 + 3 + 5 + 7 + ... + 49 
* Nhận xét:+ số hạng đầulà : 1và số hạng cuối là: 49. 
+ Khoảng cách giữa hai số hạng là: 2 
 +Scó 25 số hạng được tính bằng cách: ( 49 –1 ): 2 + 1 = 25 
Tatính tổng S như sau: S = 1 + 3 + 5 + 7 + .. . + 49 
S = 49 + 47 + 45 + 43 + .. . + 1 
S + S = ( 1 + 49) + ( 3 + 47) + (5 + 45) + (7 + 43) + .. . + (49 + 1) 
2S = 50+ 50 +50 + 50 +.. . +50 (có25 số hạng ) 2S = 50. 25 S = 50.25 : 2 = 625 
*TQ: Cho Tổng : S = a1 + a2 + a3 + .. . + an 
Trong đó: số hạng đầu là: a1 ;số hạng cuốilà: an ; khoảng cách là: k 
Sốsố hạng được tính bằng cách: số số hạng = ( sốhạng cuối– số hạng đầu) :khoảng cách + 1 
Sốsố hạng m= ( an – a1 ) : k + 1 
Tổng S được tính bằng cách:Tổng S = ( số hạng cuối+ số hạng đầu ).Sốsố hạng : 2 
S = ( an + a1) . m : 2 
Bài 1:Tính tổng sau: 
a) A = 1 + 2 + 3 + 4 + .. . + 100 b) B = 2 + 4 + 6 + 8 + .. . + 100 
c) C = 4 + 7 + 10 + 13 + .. . + 301 d) D = 5 + 9 + 13 + 17 + .. .+ 201. 
Bài 2: (VN)Tính các tổng: 
a) A = 5 + 8 + 11 + 14 + .. . + 302 b) B = 7 + 11 + 15 + 19 + .. .+ 203. 
c) C = 6 + 11 + 16 + 21 + .. . + 301 d) D =8 + 15 + 22 + 29 + .. . + 351. 
Bài 3: Cho tổng S = 5 + 8 + 11 + 14 + .. . 
a)Tìm số hạng thứ100 của tổng. 
b) Tính tổng 100 số hạng đầu tiên. 
Bài 4: (VN ) Cho tổng S = 7 + 12 + 17 + 22 + .. . 
a)Tìm số hạng tứ50 của tổng. 
b) Tính tổng của 50 số hạng đầu tiên. 
Bài 5:Tính tổng của tất cả các số tựnhiên x, biết xlà số có hai chữ số và 12 < x < 91 
Bài 6: (VN) Tính tổng củacác sốtự nhiên a , biết a có ba chữ số và 119 < a < 501. 
Bài 7: Cho số A= 123456 .. .50515253.bằng cách viết liên tiếp các số tự nhiên từ1 đến 53. a)Hỏi Acó bao nhiêu chữ số. b) Chữ số2 xuất hiện bao nhiêu lần.? 
c) Chữsố thứ 50là chữ số nào ? d)Tímhtổng các chữsố của A. 
Bài 8 : (VN)Viết liên tiếpcác sốtự nhiên từ 5đến 90ta được số B = 5678910888990. 
a)Hỏi B cóbao nhiêu chữsố? 
b) Chữ số5 xuất hiện bao nhiêu lần ? 
c) Chữ số thứ 100của B là chữsố nào ? 
d)Tính tổng các chữsố của B. 
Bài 9: Tính 1 + 2 + 3 + .. . + 1998 + 1999
Hướng dẫn- áp dụng theo cách tích tổng của Gauss
- Nhận xét: Tổng trên có 1999 số hạng
Do đó 
S = 1 + 2 + 3 + .. . + 1998 + 1999 = (1 + 1999). 1999: 2 = 2000.1999: 2 = 1999000
Bài 10: Tính tổng của:
a/ Tất cả các số tự nhiên có 3 chữ số.
b/ Tất cả các số lẻ có 3 chữ số.
Hướng dẫn:a/ S1 = 100 + 101 + .. . + 998 + 999 
Tổng trên có (999 – 100) + 1 = 900 số hạng. Do đóS1= (100+999).900: 2 = 494550
b/ S2 = 101+ 103+ .. . + 997+ 999 Tổng trên có (999 – 101): 2 + 1 = 450 số hạng. Do đóS2 = (101 + 999). 450 : 2 = 247500
Bài 11: Tính tổng
a/ Tất cả các số: 2, 5, 8, 11, .. ., 296
b/ Tất cả các số: 7, 11, 15, 19, .. ., 283
ĐS: 	a/ 14751	b/ 10150 
Các giải tương tự như trên. Cần xác định số các số hạng trong dãy sô trên, đó là những dãy số cách đều.
Bài 12: Cho dãy số:
a/ 1, 4, 7, 10, 13, 19.
b/ 5, 8, 11, 14, 17, 20, 23, 26, 29.
c/ 1, 5, 9, 13, 17, 21, .. .
Hãy tìm công thức biểu diễn các dãy số trên.
ĐS:
a/ ak = 3k + 1 với k = 0, 1, 2, .. ., 6
b/ bk = 3k + 2 với k = 0, 1, 2, .. ., 9
c/ ck = 4k + 1 với k = 0, 1, 2, .. . hoặc ck = 4k + 1 với k N
Ghi chú: Các số tự nhiên lẻ là những số không chia hết cho 2, công thức biểu diễn là , k N
Các số tự nhiên chẵn là những số chia hết cho 2, công thức biểu diễn là , k N6) Bài 11:Tớnh nhanh :
a) 12 .25 +29 .25 +59 .25 b) 28 (231 +69 ) +72 (231 +69 )
 53 .11 ;75 .11 d) 79 .101
 giải :
a)12 .25 +29 .25+59 .25 = b) 28.(231 +69) +72(321 +69) =
 (12 +29 +59 ).25 = (231 +69)(28 +72) =300.100=30000
 100 .25 =2500
 c)53 .11 =53 .(10 +1) =530 +53 =583 ; 75.11 =750 +75 =825
*Chỳ ý: Muốn nhõn 1 số cú 2 chữ số với 11 ta cộng 2 chữ số đú rồi ghi kết quả vỏo giữa 2 chữ số đú. Nếu tổng lớn hơn 9 thỡ ghi hàng đơn vị vỏo giữa rồi cộng 1 vào chữ số hàng chục.
vd : 34 .11 =374 ; 69.11 =759
d ) 79.101 =79(100 +1) =7900 +79 =7979
*Chỳ ý: muốn nhõn một số cú 2 chữ số với 101 thỡ kết quả chớnh là 1 số cú được bằng cỏch viết chữ số đú 2 lần khớt nhau
vd: 84 .101 =8484 ; 63 .101 =6363 ; 90.101 =9090
*Chỳ ý: muốn nhõn một số cú 3 chữ số với 1001 thỡ kết quả chớnh là 1 số cú được bằng cỏch viết chữ số đú 2 lần khớt nhau
Ví dụ:123.1001 = 123123
*Dạng 3: Tìm x 
Bài 1:Tỡm x N biết 
(x –15) .15 = 0 b) 32 (x –10 ) = 32 
 x –15 = 0 x –10 = 1
 	x =15 x = 11 
Bài 2:Tỡm x N biết :
a ) (x – 15 ) – 75 = 0 b)575- (6x +70) =445 c) 315+(125-x)= 435 
 x –15 =75 6x+70 =575-445 125-x =435-315
 x =75 + 15 =90 6x =60 x =125-120
 x =10 x =5 
Bài 3:Tỡm x N biết :
x –105 :21 =15 b) (x- 105) :21 =15
 x-5 = 15 x-105 =21.15 
 x = 20 x-105 =315 
 x = 420 
Bài 4:Tỡm x N biết 
a( x – 5)(x – 7) = 0 (ĐS:x=5; x = 7) 
b/ 541 + (218 – x) = 735	 (ĐS: x = 24)
c/ 96 – 3(x + 1) = 42	(ĐS: x = 17)
d/ ( x – 47) – 115 = 0	(ĐS: x = 162)
e/ (x – 36):18 = 12	 (ĐS: x = 252)
*.Dạng 4: Ma phương 
9
19
5
7
11
15
17
3
10
Cho bảng số sau:
Các số đặt trong hình vuông có tính chất rất đặc biệt. đó là tổng các số theo hàng, cột hay đường chéo đều bằng nhau. Một bảng ba dòng ba cột có tính chất như vậy gọi là ma phương cấp 3 (hình vuông kỳ diệu)
15
10
12
Bài 1: Điền vào các ô còn lại để được một ma phương cấp 3 có tổng các số theo hàng, theo cột bằng 42.
15
10
17
16
14
12
11
18
13
Hướng dẫn:
4
9
2
3
5
7
8
1
6
1
4
2
7
5
3
8
6
9
Bài 2: Điền các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng có 3 dòng 3 cột để được một ma phương cấp 3?
Hướng dẫn: Ta vẽ hình 3 x 3 = 9 và đặt thêm 4o ô phụ vào giữa các cạnh hình vuông và ghi lại lần lượt các số vào các ô như hình bên trái. Sau đó chuyển mỗi số ở ô phụ vào hình vuông qua tâm hình vuông như hình bên phải.
8
9
24
36
12
4
6
16
18
Bài 3: Cho bảng sau
10
a
50
100
b
c
d
e
40
Ta có một ma phương cấp 3 đối với phép nhân. Hãy điền tiếp vào các ô trống còn lại để có ma phương? 
ĐS: a = 16, b = 20, c = 4, d = 8, e = 25

Tài liệu đính kèm:

  • docChuong_I_1_Tap_hop_Phan_tu_cua_tap_hop.doc