I- Mục tiêu
+ Kiến thức: - HS nắm vững các định nghĩa về tứ giác, tứ giác lồi, các khái niệm : Hai đỉnh kề nhau, hai cạnh kề nhau, hai cạnh đối nhau, điểm trong, điểm ngoài của tứ giác & các tính chất của tứ giác. Tổng bốn góc của tứ giác là 3600.
+ Kỹ năng: HS tính được số đo của một góc khi biết ba góc còn lại, vẽ được tứ giác khi biết số đo 4 cạnh & 1 đường chéo.
+ Thái độ: Rèn tư duy suy luận ra được 4 góc ngoài của tứ giác là 3600
II-Phương tiện thực hiện:
- GV: com pa, thước, 2 tranh vẽ hình 1 ( sgk ) Hình 5 (sgk) bảng phụ
- HS: Thước, com pa, bảng nhóm
III. Phương pháp: Đàm thoại, thuyết trình
IV- Tiến trình bài dạy
1)Ôn định tổ chức: Kiểm tra sĩ số, vệ sinh, trang phục.
2) Kiểm tra bài cũ:- GV: kiểm tra đồ dùng học tập của học sinh và nhắc nhở dụng cụ học tập cần thiết: thước kẻ, ê ke, com pa, thước đo góc,
Ngày soạn : 12/08/2015 Tuần : 01, tiết 01 Chương I: TỨ GIÁC TỨ GIÁC I- Mục tiêu + Kiến thức: - HS nắm vững các định nghĩa về tứ giác, tứ giác lồi, các khái niệm : Hai đỉnh kề nhau, hai cạnh kề nhau, hai cạnh đối nhau, điểm trong, điểm ngoài của tứ giác & các tính chất của tứ giác. Tổng bốn góc của tứ giác là 3600. + Kỹ năng: HS tính được số đo của một góc khi biết ba góc còn lại, vẽ được tứ giác khi biết số đo 4 cạnh & 1 đường chéo. + Thái độ: Rèn tư duy suy luận ra được 4 góc ngoài của tứ giác là 3600 II-Phương tiện thực hiện: - GV: com pa, thước, 2 tranh vẽ hình 1 ( sgk ) Hình 5 (sgk) bảng phụ - HS: Thước, com pa, bảng nhóm III. Phương pháp: Đàm thoại, thuyết trình IV- Tiến trình bài dạy 1)Ôn định tổ chức: Kiểm tra sĩ số, vệ sinh, trang phục. 2) Kiểm tra bài cũ:- GV: kiểm tra đồ dùng học tập của học sinh và nhắc nhở dụng cụ học tập cần thiết: thước kẻ, ê ke, com pa, thước đo góc, 3) Bài mới : Hoạt động của giáo viên, học sinh Nội dung bài học * Hoạt động 1: Hình thành định nghĩa - GV: treo tranh (bảng phụ) B B . N Q . .P C A . M A C D H1(b) H1 (a) D - HS: Quan sát hình & trả lời - Các HS khác nhận xét -GV: Trong các hình trên mỗi hình gồm 4 đoạn thẳng: AB, BC, CD & DA. Hình nào có 2 đoạn thẳng cùng nằm trên một ĐT - Ta có H1 là tứ giác, hình 2 không phải là tứ giác. Vậy tứ giác là gì ? - GV: Chốt lại & ghi định nghĩa - GV: giải thích : 4 đoạn thẳng AB, BC, CD, DA trong đó đoạn đầu của đoạn thẳng thứ nhất trùng với điểm cuối của đoạn thẳng thứ 4. + 4 đoạn thẳng AB, BC, CD, DA trong đó không có bất cứ 2 đoạn thẳng nào cùng nằm trên 1 đường thẳng. + Cách đọc tên tứ giác phải đọc hoặc viết theo thứ tự các đoạn thẳng như: ABCD, BCDA, ADBC +Các điểm A, B, C, D gọi là các đỉnh của tứ giác. + Các đoạn thẳng AB, BC, CD, DA gọi là các cạnh của tứ giác. * Hoạt động 2: Định nghĩa tứ giác lồi -GV: Hãy lấy mép thước kẻ lần lượt đặt trùng lên mỗi cạch của tứ giác ở H1 rồi quan sát - H1(a) luôn có hiện tượng gì xảy ra ? - H1(b) (c) có hiện tượng gì xảy ra ? - GV: Bất cứ đương thẳng nào chứa 1 cạnh của hình H1(a) cũng không phân chia tứ giác thành 2 phần nằm ở 2 nửa mặt phẳng có bờ là đường thẳng đó gọi là tứ giác lồi. - Vậy tứ giác lồi là tứ giác như thế nào ? + Trường hợp H1(b) & H1 (c) không phải là tứ giác lồi * Hoạt động 3: Nêu các khái niệm cạnh kề đối, góc kề, đối điểm trong , ngoài. GV: Vẽ H3 và giải thích khái niệm: GV: Không cần tính số mỗi góc hãy tính tổng 4 góc A+B+C+D= ? (độ) - Gv: ( gợi ý hỏi) + Tổng 3 góc của 1 là bao nhiêu độ? + Muốn tính tổng A+B+C+D = ? (độ) ( mà không cần đo từng góc ) ta làm ntn? + Gv chốt lại cách làm: - Chia tứ giác thành 2 có cạnh là đường chéo - Tổng 4 góc tứ giác = tổng các góc của 2 ABC & ADC Tổng các góc của tứ giác bằng 3600 - GV: Vẽ hình & ghi bảng 1) Định nghĩa B A C D H1(c) A B ‘ D C H2 - Hình 2 có 2 đoạn thẳng BC & CD cùng nằm trên 1 đường thẳng. * Định nghĩa: Tứ giác ABCD là hình gồm 4 đoạn thẳng AB, BC, CD, DA trong đó bất kỳ 2 đoạn thẳng nào cũng không cùng nằm trên một đường thẳng. * Tên tứ giác phải được đọc hoặc viết theo thứ tự của các đỉnh. *Định nghĩa tứ giác lồi * Định nghĩa: (sgk) * Chú ý: Khi nói đến 1 tứ giác mà không giải thích gì thêm ta hiểu đó là tứ giác lồi + Hai đỉnh thuộc cùng một cạnh gọi là hai đỉnh kề nhau + hai đỉnh không kề nhau gọi là hai đỉnh đối nhau + Hai cạnh cùng xuất phát từ một đỉnh gọi là hai cạnh kề nhau + Hai cạnh không kề nhau gọi là hai cạnh đối nhau - Điểm nằm trong M, P điểm nằm ngoài N, Q 2/ Tổng các góc của một tứ giác ( HD4) B 1 1 A 2 C 2 D = 1800 A2 + D + C2 = 1800 (A1+A2)+B +(C1+C2) +D = 3600 Hay A+ B+ C+ D= 3600 * Định lý: SGK IV- Củng cố - GV: cho HS làm bài tập trang 66. Hãy tính các góc còn lại - Hướng dẫn HS học tập ở nhà - Nêu sự khác nhau giữa tứ giác lồi & tứ giác không phải là tứ giác lồi ? - Làm các bài tập : 2, 3, 4 (sgk) * Chú ý : T/c các đường phân giác của tam giác cân * HD bài 4: Dùng com pa & thước thẳng chia khoảng cách vẽ tam giác có 1 cạnh là đường chéo trước rồi vẽ 2 cạch còn lại * Bài tập NC: ( Bài 2 sổ tay toán học) Cho tứ giác lồi ABCD chứng minh rằng: đoạn thẳng MN nối trung điểm của 2 cạnh đối diện nhỏ hơn hoặc bằng nửa tổng 2 cạnh còn lạin(Gợi ý: Nối trung điểm đường chéo). - Đọc trước Đ 2 Hình Thang V. RÚT KINH NGHIỆM Ngày soạn : 12/08/2015 Tuần : 01, tiết 02 HÌNH THANG I- Mục tiêu + Kiến thức: - HS nắm vững các định nghĩa về hình thang , hình thang vuông các khái niệm : cạnh bên, đáy , đường cao của hình thang + Kỹ năng: - Nhận biết hình thang hình thang vuông, tính được các góc còn lại của hình thang khi biết một số yếu tố về góc. + Thái độ: Rèn tư duy suy luận, sáng tạo II- Phương tiện thực hiện: - GV: com pa, thước, tranh vẽ bảng phụ, thước đo góc - HS: Thước, com pa, bảng nhóm III. Phương pháp: Đàm thoại, thuyết trình IV. Tiến trình bài dạy 1) Ôn định tổ chức: Kiểm tra sĩ số, vệ sinh, trang phục. 2) Kiểm tra bài cũ:- GV: (dùng bảng phụ ) * HS1: Thế nào là tứ giác lồi ? Phát biểu ĐL về tổng 4 góc của 1 tứ giác ? * HS 2: Góc ngoài của tứ giác là góc như thế nào ?Tính các góc ngoài của tứ giác A B 1 1 1 B 900 C 1 750 1200 1 C A 1 D D 1 3- Bài mới: Hoạt động của giáo viên, học sinh Nội dung bài học * Hoạt động 1: ( Giới thiệu hình thang) - GV: Tứ giác có tính chất chung là + Tổng 4 góc trong là 3600 + Tổng 4 góc ngoài là 3600 Ta sẽ nghiên cứu sâu hơn về tứ giác. - GV: đưa ra hình ảnh cái thang & hỏi + Hình trên mô tả cái gì ? + Mỗi bậc của thang là một tứ giác, các tứ giác đó có đặc điểm gì ? & giống nhau ở điểm nào ? - GV: Chốt lại + Các tứ giác đó đều có 2 cạnh đối // Ta gọi đó là hình thang ta sẽ nghiên cứu trong bài hôm nay. * Hoạt động 2: Định nghĩa hình thang - GV: Em hãy nêu định nghĩa thế nào là hình thang - GV: Tứ giác ở hình 13 có phải là hình thang không ? vì sao ? - GV: nêu cách vẽ hình thang ABCD + B1: Vẽ AB // CD + B2: Vẽ cạnh AD & BC & đương cao AH - GV: giới thiệu cạnh. đáy, đường cao * Hoạt động 3: Bài tập áp dụng - GV: dùng bảng phụ hoặc đèn chiếu B C 600 600 A D (H. a) E I N F 1200 G 1050 M 1150 750 H K 1 (H.b) (H.c) - Qua đó em hình thang có tính chất gì ? * Hoạt động 4: ( Bài tập áp dụng) GV: đưa ra bài tập HS làm việc theo nhóm nhỏ Cho hình thang ABCD có 2 đáy AB & CD biết: AD // BC. CMR: AD = BC; AB = CD A B ABCD là hình thang GT đáy AB & CD AD// BC KL AB=CD: AD= BC D C Bài toán 2: A B ABCD là hình thang GT đáy AB & CD AB = CD KL AD// BC; AD = BC D C - GV: qua bài 1 & bài 2 em có nhận xét gì ? * Hoạt động 5: Hình thang vuông 1) Định nghĩa Hình thang là tứ giác có hai cạnh đối song song A B D H C * Hình thang ABCD : + Hai cạnh đối // là 2 đáy + AB đáy nhỏ; CD đáy lớn + Hai cạnh bên AD & BC + Đường cao AH (H. a) A = C = 600 AD// BC Hình thang - (H.b)Tứ giác EFGH có: H = 750 = 1050 (Kề bù) = G= 1050 GF// EH Hình thang - (H.c) Tứ giác IMKN có: N= 1200 K = 1150 IN không song song với MK đó không phải là hình thang * Nhận xét: + Trong hình thang 2 góc kề một cạnh bù nhau (có tổng = 1800) + Trong tứ giác nếu 2 góc kề một cạnh nào đó bù nhau Hình thang. * Bài toán 1 - Hình thang ABCD có 2 đáy AB & CD theo (gt)AB // CD (đn)(1) mà AD // BC (gt) (2) Từ (1) & (2)AD = BC; AB = CD ( 2 cắp đoạn thẳng // chắn bởi đương thẳng //.) * Bài toán 2: (cách 2) ABC = ADC (g.c.g) * Nhận xét 2: (sgk)/70. 2) Hình thang vuông Là hình thang có một góc vuông. A B D C IV.Củng cố :- GV: đưa bài tập 7 ( Bằng bảng phụ) . Tìm x, y ở hình 21 - Hướng dẫn HS học tập ở nhà: Ngày 17 tháng 08 năm 2015 Duyệt tuần : 01 ĐÀO VĂN CÒN - Học bài. Làm các bài tập 6,8,9 - Trả lời các câu hỏi sau: + Khi nào một tứ giác được gọi là hình thang. + Khi nào một tứ giác được gọi là hình thang vuông. V. RÚT KINH NGHIỆM
Tài liệu đính kèm: