I. TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ:
* Định lí bổ sung:
+ Đa thức f(x) có nghiệm hữu tỉ thì có dạng p/q trong đó p là ước của hệ số tự do, q là ước
dương của hệ số cao nhất
+ Nếu f(x) có tổng các hệ số bằng 0 thì f(x) có một nhân tử là x – 1
+ Nếu f(x) có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử
bậc lẻ thì f(x) có một nhân tử là x + 1
+ Nếu a là nghiệm nguyên của f(x) và f(1); f(- 1) khác 0 thì f(1)
a - 1
và f(-1)
a + 1
đều là số
nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự d
o ®iÓm cña DF vμ BC KBC cã BF võa lμ ph©n gi¸c võa lμ ®−êng cao nªn KBC c©n t¹i B BK = BC vμ FC = FK I P FK M D C BA www.VNMATH.com www.vnmath.com 35 MÆt kh¸c D lμ trung ®iÓm AC nªn DF lμ ®−êng trung b×nh cña AKC DF // AK hay DM // AB Suy ra M lμ trung ®iÓm cña BC DF = 1 2 AK (DF lμ ®−êng trung b×nh cña AKC), ta cã BG BK = GD DF ( do DF // BK) BG BK 2BK = GD DF AK (1) Mæt kh¸c CE DC - DE DC AD1 1 DE DE DE DE (V× AD = DC) CE AE - DE DC AD1 1 DE DE DE DE Hay CE AE - DE AE AB1 2 2 DE DE DE DF (v× AE DE = AB DF : Do DF // AB) Suy ra CE AK + BK 2(AK + BK)2 2 DE DE AK (Do DF = 1 2 AK) CE 2(AK + BK) 2BK2 DE AK AK (2) Tõ (1) vμ (2) suy ra BG GD = CE DE EG // BC Gäi giao ®iÓm cña EG vμ DF lμ O ta cã OG OE FO = = MC MB FM OG = OE Bμi tËp vÒ nhμ Bμi 1: Cho tø gi¸c ABCD, AC vμ BD c¾t nhau t¹i O. §−êng th¼ng qua O vμ song song víi BC c¾t AB ë E; ®−êng th¼ng song song víi CD qua O c¾t AD t¹i F a) Chøng minh FE // BD b) Tõ O kÎ c¸c ®−êng th¼ng song song víi AB, AD c¾t BD, CD t¹i G vμ H. Chøng minh: CG. DH = BG. CH Bμi 2: Cho h×nh b×nh hμnh ABCD, ®iÓm M thuéc c¹nh BC, ®iÓm N thuéc tia ®èi cña tia BC sao cho BN = CM; c¸c ®−êng th¼ng DN, DM c¾t AB theo thø tù t¹i E, F. Chøng minh: a) AE2 = EB. FE b) EB = 2AN DF . EF M G K F D E C B A www.VNMATH.com www.vnmath.com 36 CHUYEÂN ÑEÀ 9 – CAÙC BAØI TOAÙN SÖÛ DUÏNG ÑÒNH LÍ TALEÙT VAØ TÍNH CHAÁT ÑÖÔØNG PHAÂN GIAÙC A. Kieán thöùc: 1. Ñònh lí Ta-leùt: * Ñònh lí Taleùt ABC MN // BC AM AN = AB AC * Heä quaû: MN // BC AM AN MN = AB AC BC 2. Tính chaát ñöôøng phaân giaùc: ABC ,AD laø phaân giaùc goùc A BD AB = CD AC AD’laø phaân giaùc goùc ngoaøi taïi A: BD' AB = CD' AC B. Baøi taäp vaän duïng 1. Baøi 1: Cho ABC coù BC = a, AB = b, AC = c, phaân giaùc AD a) Tính ñoä daøi BD, CD b) Tia phaân giaùc BI cuûa goùc B caét AD ôû I; tính tæ soá: AI ID Giaûi a) AD laø phaân giaùc cuûa BAC neân BD AB c CD AC b BD c BD c acBD = CD + BD b + c a b + c b + c Do ñoù CD = a - ac b + c = ab b + c b) BI laø phaân giaùc cuûa ABC neân AI AB ac b + cc : ID BD b + c a 2. Baøi 2: Cho ABC, coù B < 600 phaân giaùc AD a) Chöùng minh AD < AB b) Goïi AM laø phaân giaùc cuûa ADC. Chöùng minh raèng BC > 4 DM Giaûi a)Ta coù AADB = C + 2 > A + C 2 = 0 0180 - B 60 2 ADB > B AD < AB b) Goïi BC = a, AC = b, AB = c, AD = d Trong ADC, AM laø phaân giaùc ta coù DM AD = CM AC DM AD DM AD = = CM + DM AD + AC CD AD + AC D' CB A D CB A a c b I D CB A M D BC A NM CB A www.VNMATH.com www.vnmath.com 37 DM = CD.AD CD. d AD + AC b + d ; CD = ab b + c ( Vaän duïng baøi 1) DM = abd (b + c)(b + d) Ñeå c/m BC > 4 DM ta c/m a > 4abd (b + c)(b + d) hay (b + d)(b + c) > 4bd (1) Thaät vaäy : do c > d (b + d)(b + c) > (b + d)2 4bd . Baát ñaúng thöùc (1) ñöôïc c/m Baøi 3: Cho ABC, trung tuyeán AM, caùc tia phaân giaùc cuûa caùc goùc AMB , AMC caét AB, AC theo thöù töï ôû D vaø E a) Chöùng minh DE // BC b) Cho BC = a, AM = m. Tính ñoä daøi DE c) Tìm taäp hôïp caùc giao dieåm I cuûa AM vaø DE neáu ABC coù BC coá ñònh, AM = m khoâng ñoåi d) ABC coù ñieàu kieän gì thì DE laø ñöôøng trung bình cuûa noù Giaûi a) MD laø phaân giaùc cuûa AMB neân DA MB DB MA (1) ME laø phaân giaùc cuûa AMC neân EA MC EC MA (2) Töø (1), (2) vaø giaû thieát MB = MC ta suy ra DA EA DB EC DE // BC b) DE // BC DE AD AI BC AB AM . Ñaët DE = x xm - x 2a.m2 x = a m a + 2m c) Ta coù: MI = 1 2 DE = a.m a + 2m khoâng ñoåi I luoân caùch M moät ñoaïn khoâng ñoåi neân taäp hôïp caùc ñieåm I laø ñöôøng troøn taâm M, baùn kính MI = a.m a + 2m (Tröø giao ñieåm cuûa noù vôùi BC d) DE laø ñöôøng trung bình cuûa ABC DA = DB MA = MB ABC vuoâng ôû A 4. Baøi 4: Cho ABC ( AB < AC) caùc phaân giaùc BD, CE a) Ñöôøng thaúng qua D vaø song song vôùi BC caét AB ôû K, chöùng minh E naèm giöõa B vaø K b) Chöùng minh: CD > DE > BE Giaûi a) BD laø phaân giaùc neân AD AB AC AE AD AE = < = DC BC BC EB DC EB (1) Maët khaùc KD // BC neân AD AK DC KB (2) Töø (1) vaø (2) suy ra AK AE AK + KB AE + EB KB EB KB EB AB AB KB > EB KB EB ED M I CB A E D M K CB A www.VNMATH.com www.vnmath.com 38 E naèm giöõa K vaø B b) Goïi M laø giao ñieåm cuûa DE vaø CB. Ta coù CBD = KDB (so le trong) KBD = KDB maø E naèm giöõa K vaø B neân KDB > EDB KBD > EDB EBD > EDB EB < DE Ta laïi coù CBD + ECB = EDB + DEC DEC > ECB DEC > DCE (Vì DCE = ECB ) Suy ra: CD > ED CD > ED > BE 5. Baøi 5: Cho ABC . Ba ñöôøng phaân giaùc AD, BE, CF. Chöùng minh a. DB EC FA. . 1 DC EA FB . b. 1 1 1 1 1 1 AD BE CF BC CA AB . Giaûi a)AD laø ñöôøng phaân giaùc cuûa BAC neân ta coù: DB AB = DC AC (1) Töông töï: vôùi caùc phaân giaùc BE, CF ta coù: EC BC = EA BA (2) ; FA CA = FB CB (3) Töø (1); (2); (3) suy ra: DB EC FA AB BC CA. . = . . DC EA FB AC BA CB = 1 b) §Æt AB = c , AC = b , BC = a , AD = da. Qua C kÎ ®−êng th¼ng song song víi AD , c¾t tia BA ë H. Theo §L TalÐt ta cã: AD BA CH BH BA.CH c.CH cAD .CH BH BA + AH b + c Do CH < AC + AH = 2b nªn: 2a bcd b c 1 1 1 1 1 1 1 1 2 2 2a a b c d bc b c d b c Chøng minh t−¬ng tù ta cã : 1 1 1 1 2bd a c Vμ 1 1 1 1 2cd a b Nªn: 1 1 1 1 1 1 1 1 1 1 2a b cd d d b c a c a b 1 1 1 1 1 1 1.2 2a b cd d d a b c 1 1 1 1 1 1 a b cd d d a b c ( ®pcm ) Bμi tËp vÒ nhμ Cho ABC coù BC = a, AC = b, AB = c (b > c), caùc phaân giaùc BD, CE a) Tính ñoä daøi CD, BE roài suy ra CD > BE b) Veõ hình bình haønh BEKD. Chöùng minh: CE > EK c) Chöùng minh CE > BD www.vnmath.com H F E D CB A www.VNMATH.com www.vnmath.com 39 CHUYEÂN ÑEÀ 10 – CAÙC BAØI TOAÙN VEÀ TAM GIAÙC ÑOÀNG DAÏNG A. Kieán thöùc: * Tam giaùc ñoàng daïng: a) tröôøng hôïp thöù nhaát: (c.c.c) ABC A’B’C’ AB AC BC = = A'B' A'C' B'C' b) tröôøng hôïp thöù nhaát: (c.g.c) ABC A’B’C’ AB AC = A'B' A'C' ; A = A' c. Tröôøng hôïp ñoàng daïng thöù ba (g.g) ABC A’B’C’ A = A' ; B = B' AH; A’H’laø hai ñöôøng cao töông öùng thì: A'H' AH = k (Tæ soá ñoàng daïng); A'B'C' ABC S S = K 2 B. Baøi taäp aùp duïng Baøi 1: Cho ABC coù B = 2 C , AB = 8 cm, BC = 10 cm. a)Tính AC b)Neáu ba caïnh cuûa tam giaùc treân laø ba soá töï nhieân lieân tieáp thì moãi caïnh laø bao nhieâu? Giaûi Caùch 1: Treân tia ñoái cuûa tia BA laáy ñieåm E sao cho:BD = BC ACD ABC (g.g) AC AD AB AC 2AC AB. AD =AB.(AB + BD) = AB(AB + BC) = 8(10 + 8) = 144 AC = 12 cm Caùch 2: Veõ tia phaân giaùc BE cuûa ABC ABE ACB 2AB AE BE AE + BE AC = AC = AB(AB + CB) AC AB CB AB + CB AB + CB = 8(8 + 10) = 144 AC = 12 cm b) Goïi AC = b, AB = a, BC = c thì töø caâu a ta coù b2 = a(a + c) (1) Vì b > aneân coù theå b = a + 1 hoaëc b = a + 2 + Neáu b = a + 1 thì (a + 1)2 = a2 + ac 2a + 1 = ac a(c – 2) = 1 a = 1; b = 2; c = 3(loaïi) + Neáu b = a + 2 thì a(c – 4) = 4 - Vôùi a = 1 thì c = 8 (loaïi) - Vôùi a = 2 thì c = 6 (loaïi) E D C B A D CB A www.VNMATH.com www.vnmath.com 40 - vôùi a = 4 thì c = 6 ; b = 5 Vaäy a = 4; b = 5; c = 6 Baøi 2: Cho ABC caân taïi A, ñöôøng phaân giaùc BD; tính BD bieát BC = 5 cm; AC = 20 cm Giaûi Ta coù CD BC 1 = AD AC 4 CD = 4 cm vaø BC = 5 cm Baøi toaùn trôû veà baøi 1 Baøi 3: Cho ABC caân taïi A vaø O laø trung ñieåm cuûa BC. Moät ñieåm O di ñoäng treân AB, laáy ñieåm E treân AC sao cho 2OBCE = BD . Chöùng minh raèng a) DBO OCE b) DOE DBO OCE c) DO, EO laàn löôït laø phaân giaùc cuûa caùc goùc BDE, CED d) khoaûng caùch töø O ñeán ñoaïn ED khoâng ñoåi khi D di ñoäng treân AB Giaûi a) Töø 2OBCE = BD CE OB = OB BD vaø B = C (gt) DBO OCE b) Töø caâu a suy ra 23O = E (1) Vì B, O ,C thaúng haøng neân 03O + DOE EOC 180 (2) trong tam giaùc EOC thì 02E + C EOC 180 (3) Töø (1), (2), (3) suy ra DOE B C DOE vaø DBO coù DO OE = DB OC (Do DBO OCE) vaø DO OE = DB OB (Do OC = OB) vaø DOE B C neân DOE DBO OCE c) Töø caâu b suy ra 1 2D = D DO laø phaân giaùc cuûa caùc goùc BDE Cuûng töø caâu b suy ra 1 2E = E EO laø phaân giaùc cuûa caùc goùc CED c) Goïi OH, OI laø khoaûng caùch töø O ñeán DE, CE thì OH = OI, maø O coá ñònh neân OH khoâng ñoåi OI khoâng ñoåi khi D di ñoäng treân AB Baøi 4: (Ñeà HSG huyeän Loäc haø – naêm 2007 – 2008) Cho ABC caân taïi A, coù BC = 2a, M laø trung ñieåm BC, laáy D, E thuoäc AB, AC sao cho DME = B a) Chöùng minh tích BD. CE khoâng ñoåi b)Chöùng minh DM laø tia phaân giaùc cuûa BDE c) Tính chu vi cuûa AED neáu ABC laø tam giaùc ñeàu Giaûi 21 3 2 1 H I O E D CB A www.VNMATH.com www.vnmath.com 41 a) Ta coù DMC = DME + CME = B + BDM , maø DME = B(gt) neân CME = BDM , keát hôïp vôùi B = C (ABC caân taïi A) suy ra BDM CME (g.g) 2BD BM = BD. CE = BM. CM = a CM CE khoâng ñoåi b) BDM CME DM BD DM BD = = ME CM ME BM (do BM = CM) DME DBM (c.g.c) MDE = BMD hay DM laø tia phaân giaùc cuûa BDE c) chöùng minh töông töï ta coù EM laø tia phaân giaùc cuûa DEC keû MH CE ,MI DE, MK DB thì MH = MI = MK DKM = DIM DK =DI EIM = EHM EI = EH Chu vi AED laø PAED = AD + DE + EA = AK +AH = 2AH (Vì AH = AK) ABC laø tam giaùc ñeàu neân suy ra CME cuûng laø tam giaùc ñeàu CH = MC 2 2 a AH = 1,5a PAED = 2 AH = 2. 1,5 a = 3a Baøi 5: Cho tam giaùc ABC, trung tuyeán AM. Qua ñieåm D thuoäc caïnh BC, veõ ñöôøng thaúng song song vôùi AM, caét AB, AC taïi E vaø F a) chöùng minh DE + DF khoâng ñoåi khi D di ñoäng treân BC b) Qua A veõ ñöôøng thaúng song song vôùi BC, caét FE taïi K. Chöùng minh raèng K laø trung ñieåm cuûa FE Giaûi a) DE // AM DE BD BD = DE = .AM AM BM BM (1) DF // AM DF CD CD CD = DF = .AM = .AM AM CM CM BM (2) Töø (1) vaø (2) suy ra DE + DF = BD CD .AM + .AM BM BM = BD CD BC+ .AM = .AM = 2AM BM BM BM khoâng ñoåi b) AK // BC suy ra FKA AMC (g.g) FK KA = AM CM (3) EK KA EK KA EK KA EK KA EK KA = = = ED BD ED + EK BD + KA KD BD + DM AM BM AM CM (2) (Vì CM = BM) Töø (1) vaø (2) suy ra FK EK AM AM FK = EK hay K laø trung ñieåm cuûa FE Baøi 6: (Ñeà HSG huyeän Thaïch haø naêm 2003 – 2004) Cho hình thoi ABCD caïnh a coù 0A = 60 , moät ñöôøng thaúng baát kyø qua C caét tia ñoái cuûa caùc tia BA, DA taïi M, N K H I M E D CB A K F E D M CB A www.VNMATH.com www.vnmath.com 42 a) Chöùng minh raèng tích BM. DN coù giaù trò khoâng ñoåi b) Goïi K laø giao ñieåm cuûa BN vaø DM. Tính soá ño cuûa goùc BKD Giaûi a) BC // AN MB CM = BA CN (1) CD// AM CM AD = CN DN (2) Töø (1) vaø (2) suy ra 2MB AD = MB.DN = BA.AD = a.a = a BA DN b) MBD vaøBDN coù MBD = BDN = 1200 MB MB CM AD BD = = BD BA CN DN DN (Do ABCD laø hình thoi coù 0A = 60 neân AB = BC = CD = DA) MBD BDN Suy ra 1 1M = B . MBD vaøBKD coù BDM = BDK vaø 1 1M = B neân 0BKD = MBD = 120 Baøi 7: Cho hình bình haønh ABCD coù ñöôøng cheùo lôùn AC,tia Dx caét SC, AB, BC laàn löôït taïi I, M, N. Veõ CE vuoâng goùc vôùi AB, CF vuoâng goùc vôùi AD, BG vuoâng goùc vôùi AC. Goïi K laø ñieåm ñoái xöùng vôùi D qua I. Chöùng minh raèng a) IM. IN = ID2 b) KM DM = KN DN c) AB. AE + AD. AF = AC2 Giaûi a) Töø AD // CM IM CI = ID AI (1) Töø CD // AN CI ID AI IN (2) Töø (1) vaø (2) suy ra IM ID = ID IN hay ID2 = IM. IN b) Ta coù DM CM DM CM DM CM = = = MN MB MN + DM MB + CM DN CB (3) Töø ID = IK vaø ID2 = IM. IN suy ra IK2 = IM. IN IK IN IK - IM IN - IK KM KN KM IM = = = = IM IK IM IK IM IK KN IK KM IM CM CM = KN ID AD CB (4) Töø (3) vaø (4) suy ra KM DM = KN DN c) Ta coù AGB AEC AE AC= AB.AE = AC.AG AG AB AB. AE = AG(AG + CG) (5) CGB AFC AF CG CG = AC CB AD (vì CB = AD) AF . AD = AC. CG AF . AD = (AG + CG) .CG (6) 1 1 K M ND C B A I K F G E M D C BA N www.VNMATH.com www.vnmath.com 43 Coäng (5) vaø (6) veá theo veá ta coù: AB. AE + AF. AD = (AG + CG) .AG + (AG + CG) .CG AB. AE + AF. AD = AG2 +2.AG.CG + CG2 = (AG + CG)2 = AC2 Vaäy: AB. AE + AD. AF = AC2 Baøi taäp veà nhaø Baøi 1 Cho Hình bình haønh ABCD, moät ñöôøng thaúng caét AB, AD, AC laàn löôït taïi E, F, G Chöùng minh: AB AD AC + = AE AF AG HD: Keû DM // FE, BN // FE (M, N thuoäc AC) Baøi 2: Qua ñænh C cuûa hình bình haønh ABCD, keû ñöôøng thaúng caét BD, AB, AD ôû E, G, F chöùng minh: a) DE2 = FE EG . BE2 b) CE2 = FE. GE (Gôïi yù: Xeùt caùc tam giaùc DFE vaø BCE, DEC vaø BEG) Baøi 3 Cho tam giaùc ABC vuoâng taïi A, ñöôøng cao AH, trung tuyeán BM, phaân giaùc CD caét nhau taïi moät ñieåm. Chöùng minh raèng a) BH CM AD. . 1 HC MA BD b) BH = AC www.VNMATH.com www.vnmath.com 44 CHUYEÂN ÑEÀ 11 – PHÖÔNG TRÌNH BAÄC CAO A.Muïc tieâu: * Cuûng coá, oân taäp kieán thöùc vaø kyõ naêng giaûi caùc Pt baäc cao baèng caùch phaân tích thaønh nhaân töû * Khaéc saâu kyõ naêng phaân tích ña thöùc thaønh nhaân töû vaø kyõ naêng giaûi Pt B. Kieán thöùc vaø baøi taäp: I. Phöông phaùp: * Caùch 1: Ñeå giaûi caùc Pt baäc cao, ta bieán ñoåi, ruùt goïn ñeå döa Pt veà daïng Pt coù veá traùi laø moät ña thöùc baäc cao, veá phaûi baèng 0, vaän duïng caùc phöông phaùp phaân tích ña thöùc thaønh nhaân töû ñeå ñöa Pt veà daïng pt tích ñeå giaûi * Caùch 2: Ñaët aån phuï II. Caùc ví duï: 1.Ví duï 1: Giaûi Pt a) (x + 1)2(x + 2) + (x – 1)2(x – 2) = 12 ... 2x3 + 10x = 12 x3 + 5x – 6 = 0 (x3 – 1) + (5x – 5) (x – 1)(x2 + x + 6) = 0 2 2 x = 1 x - 1 = 0 x 11 23x + x + 6 = 0 x + 0 2 4 (Vì 21 23x + 0 2 4 voâ nghieäm) b) x4 + x2 + 6x – 8 = 0 (1) Veá phaûi cuûa Pt laø moät ña thöùc coù toång caùc heä soá baèng 0, neân coù moät nghieäm x = 1 neân coù nhaân töû laø x – 1, ta coù (1) (x4 – x3) + (x3 – x2) + (2x2 – 2x) + (8x – 8) = 0 ... (x – 1)(x3 + x2 + 2x + 8) (x – 1)[(x3 + 2x2) – (x2 + 2x) + (4x – 8) ] = 0 (x – 1)[x2(x + 2) – x(x + 2) + 4(x + 2) = 0 (x – 1)(x + 2)(x2 – x + 4) = 0 .... c) (x – 1)3 + (2x + 3)3 = 27x3 + 8 x3 – 3x2 + 3x – 1 + 8x3 + 36x2 + 54x + 27 – 27x3 – 8 = 0 - 18x3 + 33x2 + 57 x + 18 = 0 6x3 - 11x2 - 19x - 6 = 0 (2) Ta thaáy Pt coù moät nghieäm x = 3, neân veá traùi coù nhaân töû x – 3: (2) (6x3 – 18x2) + (7x2 – 21x) + (2x – 6) = 0 6x2(x – 3) + 7x(x – 3) + 2(x – 3) = 0 (x – 3)(6x2 + 7x + 2) = 0 (x – 3)[(6x2 + 3x) + (4x + 2)] = 0 (x – 3)[3x(2x + 1) + 2(2x + 1)] = 0 (x – 3)(2x + 1)(3x + 2) ..... d) (x2 + 5x)2 – 2(x2 + 5x) = 24 [(x2 + 5x)2 – 2(x2 + 5x) + 1] – 25 = 0 (x2 + 5x - 1)2 – 25 = 0 (x2 + 5x - 1 + 5)( (x2 + 5x - 1 – 5) = 0 (x2 + 5x + 4) (x2 + 5x – 6) = 0 [(x2 + x) +(4x + 4)][(x2 – x) + (6x – 6)] = 0 (x + 1)(x + 4)(x – 1)(x + 6) = 0 .... e) (x2 + x + 1)2 = 3(x4 + x2 + 1) (x2 + x + 1)2 - 3(x4 + x2 + 1) = 0 www.VNMATH.com www.vnmath.com 45 (x2 + x + 1)2 – 3(x2 + x + 1)( x2 - x + 1) = 0 ( x2 + x + 1)[ x2 + x + 1 – 3(x2 - x + 1)] = 0 ( x2 + x + 1)( -2x2 + 4x - 2) = 0 (x2 + x + 1)(x2 – 2x + 1) = 0 ( x2 + x + 1)(x – 1)2 = 0... f) x5 = x4 + x3 + x2 + x + 2 (x5 – 1) – (x4 + x3 + x2 + x + 1) = 0 (x – 1) (x4 + x3 + x2 + x + 1) – (x4 + x3 + x2 + x + 1) = 0 (x – 2) (x4 + x3 + x2 + x + 1) = 0 +) x – 2 = 0 x = 2 +) x4 + x3 + x2 + x + 1 = 0 (x4 + x3) + (x + 1) + x2 = 0 (x + 1)(x3 + 1) + x2 = 0 (x + 1)2(x2 – x + 1) + x2 = 0 (x + 1)2 [(x2 – 2.x. 1 2 + 1 4 ) + 3 4 ] + x2 = 0 (x + 1)2 21 3x + + 2 4 + x2 = 0 Voâ nghieäm vì (x + 1)2 21 3x + + 2 4 0 nhöng khoâng xaåy ra daáu baèng Baøi 2: a) (x2 + x - 2)( x2 + x – 3) = 12 (x2 + x – 2)[( x2 + x – 2) – 1] – 12 = 0 (x2 + x – 2)2 – (x2 + x – 2) – 12 = 0 Ñaët x2 + x – 2 = y Thì (x2 + x – 2)2 – (x2 + x – 2) – 12 = 0 y2 – y – 12 = 0 (y – 4)(y + 3) = 0 * y – 4 = 0 x2 + x – 2 – 4 = 0 x2 + x – 6 = 0 (x2 + 3x) – (2x + 6) = 0 (x + 3)(x – 2) = 0.... * y + 3 = 0 x2 + x – 2 + 3 = 0 x2 + x + 1 = 0 (voâ nghieäm) b) (x – 4)( x – 5)( x – 6)( x – 7) = 1680 (x2 – 11x + 28)( x2 – 11x + 30) = 1680 Ñaët x2 – 11x + 29 = y , ta coù: (x2 – 11x + 28)( x2 – 11x + 30) = 1680 (y + 1)(y – 1) = 1680 y2 = 1681 y = 41 y = 41 x2 – 11x + 29 = 41 x2 – 11x – 12 = 0 (x2 – x) + (12x – 12) = 0 (x – 1)(x + 12) = 0..... * y = - 41 x2 – 11x + 29 = - 41 x2 – 11x + 70 = 0 (x2 – 2x. 11 2 +121 4 )+159 4 = 0 c) (x2 – 6x + 9)2 – 15(x2 – 6x + 10) = 1 (3) Ñaët x2 – 6x + 9 = (x – 3)2 = y 0, ta coù (3) y2 – 15(y + 1) – 1 = 0 y2 – 15y – 16 = 0 (y + 1)(y – 15) = 0 Vôùi y + 1 = 0 y = -1 (loaïi) Vôùi y – 15 = 0 y = 15 (x – 3)2 = 16 x – 3 = 4 + x – 3 = 4 x = 7 + x – 3 = - 4 x = - 1 d) (x2 + 1)2 + 3x(x2 + 1) + 2x2 = 0 (4) Ñaët x2 + 1 = y thì (4) y2 + 3xy + 2x2 = 0 (y2 + xy) + (2xy + 2x2) = 0 (y + x)(y + 2x) = 0 www.VNMATH.com www.vnmath.com 46 +) x + y = 0 x2 + x + 1 = 0 : Voâ nghieäm +) y + 2x = 0 x2 + 2x + 1 = 0 (x + 1)2 = 0 x = - 1 Baøi 3: a) (2x + 1)(x + 1)2(2x + 3) = 18 (2x + 1)(2x + 2)2(2x + 3) = 72. (1) Ñaët 2x + 2 = y, ta coù (1) (y – 1)y2(y + 1) = 72 y2(y2 – 1) = 72 y4 – y2 – 72 = 0 Ñaët y2 = z 0 Thì y4 – y2 – 72 = 0 z2 – z – 72 = 0 (z + 8)( z – 9) = 0 * z + 8 = 0 z = - 8 (loaïi) * z – 9 = 0 z = 9 y2 = 9 y = 3 x = ... b) (x + 1)4 + (x – 3)4 = 82 (2) Ñaët y = x – 1 x + 1 = y + 2; x – 3 = y – 2, ta coù (2) (y + 2)4 + (y – 2)4 = 82 y4 +8y3 + 24y2 + 32y + 16 + y4 - 8y3 + 24y2 - 32y + 16 = 82 2y4 + 48y2 + 32 – 82 = 0 y4 + 24y2 – 25 = 0 Ñaët y2 = z 0 y4 + 24y2 – 25 = 0 z2 + 24 z – 25 = 0 (z – 1)(z + 25) = 0 +) z – 1 = 0 z = 1 y = 1 x = 0; x = 2 +) z + 25 = 0 z = - 25 (loaïi) Chuù yù: Khi giaûi Pt baäc 4 daïng (x + a)4 + (x + b)4 = c ta thöôøng ñaët aån phuï y = x + a + b 2 c) (4 – x)5 + (x – 2)5 = 32 (x – 2)5 – (x – 4)5 = 32 Ñaët y = x – 3 x – 2 = y + 1; x – 4 = y – 1; ta coù: (x – 2)5 – (x – 4)5 = 32 (y + 1)5 - (y – 1)5 = 32 y5 + 5y4 + 10y3 + 10y2 + 5y + 1 – (y5 - 5y4 + 10y3 - 10y2 + 5y - 1) – 32 = 0 10y4 + 20y2 – 30 = 0 y4 + 2y2 – 3 = 0 Ñaët y2 = z 0 y4 + 2y2 – 3 = 0 z2 + 2z – 3 = 0 (z – 1)(z + 3) = 0 ........ d) (x - 7)4 + (x – 8)4 = (15 – 2x)4 Ñaët x – 7 = a; x – 8 = b ; 15 – 2x = c thì - c = 2x – 15 a + b = - c , Neân (x - 7)4 + (x – 8)4 = (15 – 2x)4 a4 + b4 = c4 a4 + b4 - c4 = 0 a4 + b4 – (a + b)4 = 0 4ab(a2 + 3 2 ab + b2) = 0 2 23 74ab a + b + b 4 16 = 0 4ab = 0 (Vì 2 23 7a + b + b 4 16 0 nhöng khoâng xaåy ra daáu baèng) ab = 0 x = 7; x = 8 e) 6x4 + 7x3 – 36x2 – 7x + 6 = 0 2 21 16 x 7 x - 36 0x x (Vì x = 0 khoâng laø nghieäm). Ñaët 1x - x = y 2 21x x = y 2 + 2 , thì www.VNMATH.com www.vnmath.com 47 2 2 1 16 x 7 x - 36 0 x x 6(y 2 + 2) + 7y – 36 = 0 6y2 + 7y – 24 = 0 (6y2 – 9y) + (16y – 24) = 0 (3y + 8 )(2y – 3) = 0 +) 3y + 8 = 0 y = - 8 3 1x - x = - 8 3 ... (x + 3)(3x – 1) = 0 x = - 3x + 3 = 0 13x - 1 = 0 x = 3 +) 2y – 3 = 0 y = 3 2 1x - x = 3 2 ... (2x + 1)(x – 2) = 0 x = 2x - 2 = 0 12x + 1 = 0 x = - 2 Baøi 4: Chöùng minh raèng: caùc Pt sau voâ nghieäm a) x4 – 3x2 + 6x + 13 = 0 ( x4 – 4x2 + 4) +(x2 + 6x + 9) = 0 (x2 – 2)2 + (x + 3)2 = 0 Veá traùi (x2 – 2)2 + (x + 3)2 0 nhöng khoâng ñoàng thôøi xaåy ra x2 = 2 vaø x = -3 b) x6 + x5 + x4 + x3 + x2 + x + 1 = 0 (x – 1)( x6 + x5 + x4 + x3 + x2 + x + 1) = 0 x7 – 1 = 0 x = 1 x = 1 khoâng laø nghieäm cuûa Pt x6 + x5 + x4 + x3 + x2 + x + 1 = 0 Baøi taäp veà nhaø: Baøi 1: Giaûi caùc Pt a)(x2 + 1)2 = 4(2x – 1) HD: Chuyeån veá, trieån khai (x2 + 1)2, phaân tích thaønh nhaân töû: (x – 1)2(x2 + 2x + 5) = 0 b) x(x + 1)(x + 2)(x + 3) = 24 (Nhaân 2 nhaân töû vôùi nhau, aùp duïng PP ñaët aån phuï) c) (12x + 7)2(3x + 2)(2x + 1) = 3 (Nhaân 2 veá vôùi 24, ñaët 12x + 7 = y) d) (x2 – 9)2 = 12x + 1 (Theâm, bôùt 36x2) e) (x – 1)4 + (x – 2)4 = 1 ( Ñaët y = x – 1,5; Ñs: x = 1; x = 2) f) (x – 1)5 + (x + 3)5 = 242(x + 1) (Ñaët x + 1 = y; Ñs:0; -1; -2 ) g) (x + 1)3 + (x - 2)3 = (2x – 1)3 Ñaët x + 1 = a; x – 2 = b; 1 - 2x = c thì a + b + c = 0 a3 + b3 + c3 = 3abc h) 6x4 + 5x3 – 38x2 + 5x + 6 = 0 (Chia 2 veá cho x2; Ñaët y = 1x + x ) i) x5 + 2x4 + 3x3 + 3x2 + 2x + 1 = 0 (Veá traùi laø ña thöùc coù toång caùc heä soá baäc chaün baèng toång caùc heä soá baäc leû...) Baøi 2: Chöùng minh caùc pt sau voâ nghieäm a) 2x4 – 10x2 + 17 = 0 (Phaân tích veá traùi thaønh toång cuûa hai bình phöông) b) x4 – 2x3 + 4x2 – 3x + 2 = 0 (Phaân tích veá traùi thaønh tích cuûa 2 ña thöùc coù giaù trò khoâng aâm....) www.VNMATH.com www.vnmath.com 48 CHUYEÂN ÑEÀ 12 – VEÕ ÑÖÔØNG THAÚNG SONG SONG ÑEÅ TAÏO THAØNH CAÙC CAËP ÑOAÏN THAÚNG TYÛ LEÄ A. Phöông phaùp: Trong caùc baøi taäp vaän duïng ñònh lí Taleùt. Nhieàu khi ta caàn veõ theâm ñöôøng phlaø moät ñöôøng thaúng song song vôùi moät ñöôøng thaúng cho tröôùc,. Ñaây laø moät caùch veõ ñö
Tài liệu đính kèm: