Chuyên đề Phương trình - Bất phương trình mũ và logarith

I- LÝ THUYẾT:

1. Luỹ thừa với số mũ nguyên:

Cho n là một số nguyên dương. Với a là một số thực tuỳ ý, luỹ thừa bậc n của a là tích

của n thừa số a :

sè a

. . 

n

n

a a a a



Tính chất: 0   1, n 1

n

a a

a

. Lưu ý: 0 v¯ 0 0 n không có nghĩa.

pdf 21 trang Người đăng phammen30 Lượt xem 1002Lượt tải 1 Download
Bạn đang xem 20 trang mẫu của tài liệu "Chuyên đề Phương trình - Bất phương trình mũ và logarith", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
của các hàm số sau: 
 
     
2
3 2
2
1
2 2
2 2 1
2 1 1 1
sin
sin
1) 2) log 3) 4) 
5) 6) log 7) 8) 
x
x x
x x
x
x
y x x y x y x y x
y x y x y x y x x

     
       
Bài tập 8: Chøng minh mçi h¯m sè sau ®©y tho° m±n hÖ thøc t­¬ng øng ®± cho: 
 
 2 2
0 1 0
2 0 2
sin / // / //
/ // // /
 1) : cos sin 2) ln cos : tan
 3) cos : 2 3) ln : 
x
x
y e y x y x y y x y x y
y e x y y y y x x y xy
       
      
Bài tập 9: Chøng minh r»ng: 
1) Hµm sè 
1
1 ln
y
x x

 
 tháa m·n hÖ thøc:  1/ ln xy y y x 
2) Hµm sè   2 1 2008  xy x e tháa m·n hÖ thøc:  22
2
1
1
/ xxy
y e x
x
  

3) Hµm sè 
 
1
1
ln
ln
x
y
x x



 tháa m·n hÖ thøc:  2 2 22 1/  x y x y 
4) Hµm sè cosxy e x tháa m·n hÖ thøc:  
4
4 0 y y 
5) Hµm sè 
2 5sinxy e x tháa m·n hÖ thøc: 4 29 0// /  y y y 
Chuyên đề PT-BPT MŨ VÀ LOGARITH Luyện thi THPT Quốc gia 2016 
Giáo viên: LÊ BÁ BẢO...0935.785.115... CLB Giáo viên trẻ TP Huế 7 
Chủ đề 4: PHƢƠNG TRÌNH MŨ 
I- LÝ THUYẾT: 
 1. Nhắc lại một số tính chất: 
 
     
 
.
* , , 
* . , . ,
* 
n
n
nm n
m n nm n m n m n n m m n n n
n n
m
n mn
a a a a a
a
a a a
a a a a a a a a b a b
a b b
a a a

 
   
 
       
 
 
0 1
1
1 0
0
 2. Phƣơng trình mũ dạng đơn giản: 
 (1)  x ba a x b a    0 1 
 (2)  log ,x aa b x b a b     0 1 0 
II- MỘT SỐ PHƢƠNG PHÁP GIẢI PHƢƠNG TRÌNH MŨ: 
L­u ý: T­ duy cða c²c ph­¬ng ph²p gi°i ph­¬ng tr×nh mñ ®­îc sö dóng ®Ó gi°i 
 bÊt ph­¬ng tr×nh mñ
PHƢƠNG PHÁP 1: Phöông phaùp ñöa veà cuøng moät cô soá_ Logarit hoá 
         
 
 
f(x) ( ) f(x) ( )
( ) ( ) ( ) ( )
a a a
( )
a a a
* 
* log log ( ) ( ).log
 b log b log log b
f x f x
f x g x
f x g x f x g x
f x
a b a b
a a f x g x a
a b a b f x g x b
b
a a
a
    
    
 
     
 
0 1
1
2
 
( )
( ) 1
L­u ý: ( ) 1 ( ) 0
( ) 0
g x
f x
f x g x
f x


  
 
Bài tập 1: Giải các phương trình sau: 
a) 
2 1 1
2 4 5
x x   b) 2 3
2
0,125.4
8

    
 
x
x
 c) 
1
4.2
4
 
  
 
x
x
d) 
33 .2 576x x e) 
10 5
10 1516 0,125.8
 
 
x x
x x f) 
5 17
7 332 0,25.128
 
 
x x
x x 
h)    
22 43 5 2 23 6 9
  
   
x xx x
x x x i) 
3 2 2
2 2 18 4x x x x    
Bài tập 2: Giải các phương trình sau: 
a) 
2
3 .2 1x x  b) 
2
4 .5 1x x  c) 
1
5 .8 500
x
x x

 
d) 
2
2 3
2
2
x x  e) 
2
4 22 3x x  f) 2 13 .5 .7 245x x x   
Bài tập 3: Giải các phương trình sau: 
a)  
 
2 1
3
1
2 3
2 3
x
x


 

 b) 
2 1
1
23 0,12
5



 
 
 
x
x
x
 c) 
2 1
2 12 3 1

  
x
xx x 
d)  
 
 
 
22
2 4log 2 3 5 log 3 5
2 3 7 4 3
x x x  
   e)    
2 1
2
12 3 2 3


  
x
x
x 
Chuyên đề PT-BPT MŨ VÀ LOGARITH Luyện thi THPT Quốc gia 2016 
Giáo viên: LÊ BÁ BẢO...0935.785.115... CLB Giáo viên trẻ TP Huế 8 
PHƢƠNG PHÁP 2: Đặt nhân tử chung_ đƣa về tích 
Bài tập 4: Giải các phương trình sau: 
a) 3.8 4.12 18 2.27 0
x x x x    b)     
2 2
x x x x 2x
2 4.2 2 4 0 
c)   x x x8.3 3.2 24 6 d) 1 4 24 2 2 16x x x     
e) 
1 1 24 2 2 12    x x x e) 112.3 3.15 5 20x x x   
PHƢƠNG PHÁP 3: Đặt ẩn phụ_ Đại số hoá phƣơng trình 
 * Dạng 1: Đặt ẩn phụ đưa về phương trình bậc hai, bậc ba 
Bài tập 5: Giải các phương trình sau: 
2 2 2 2
2 2
4 8 2 5 2 6 7
1 2 2 2
2 2
1) 2.16 15.4 8 0 2) 3 4.3 27 0 3) 2 2 17 0
4) 5 5 4 0 5) 4 9.2 8 0 6) 2 2 3
7) 9 7.3
x x x x x x
x x x x x x x x
x x x x x x
   
     
    
        
       

2 21 3 1 2 sin cos=2 8) 2 7.2 7.2 2 0 9) 9 9 10 x x x x x      
* Dạng 2: Đặt ẩn phụ dựa vào nhận xét . 1A B   Dïng cho c¨n thøc 
Bài tập 6: Giải các phương trình sau: 
       
       
          
 
3
cos
1) 2 3 2 3 14 2) 2 3 2 3 4 
3) 6 35 6 35 12 4) 5 21 7 5 21 2 
5) 7 4 3 3 2 3 2 0 6) 2 3 7 4 3 2 3 4 2 3
7) 7 4 3
x xx x
x x x x
x
x x x x
x

       
       
          
        
cos 2
7 4 3 4 8) 2 3 3 3 3 2 3 2 3 0 
x x x
        
* Dạng 3: Phương trình đẳng cấp 2 2 0mA nAB pB   
 
2 2
2
2
Ph­¬ng ph²p gi°i: 0 (1)
 TH1: XÐt 0. §èi víi ph­¬ng tr×nh mñ, ta bá qua b­íc n¯y
 TH2: Chia 2 vÕ cða (1) cho : (1) 0
  

   
      
   
mA nAB pB
B
A A
B m n p
B B
Bài tập 7: Giải các phương trình sau: 
2 2 2
1 1 1
1 1 1 3 12
2 1
1) 6.9 13.6 6.4 0 2) 3.16 2.81 5.36 3) 2.4 6 9
4) 4.3 9.2 5.6 5) 2.4 6 9 6) 125 50 2
7) 25 10 2 
x x x x x x x x x
x
x x x x x x x x
x x x
   

      
     
 
2 2 2lg 1 lg lg 2 2 1 2 2
2 4 2 2 2 4 4
 8) 4 6 2.3 0 9) 2 9.2 2 0
10) 3 45.6 9.2 0 11) 3 8.3 9.9 0
x x x x x x x
x x x x x x x
    
    
     
     
Chuyên đề PT-BPT MŨ VÀ LOGARITH Luyện thi THPT Quốc gia 2016 
Giáo viên: LÊ BÁ BẢO...0935.785.115... CLB Giáo viên trẻ TP Huế 9 
Chủ đề 5: PHƢƠNG TRÌNH LOGARIT 
Phƣơng pháp 1: ĐƢA VỀ CÙNG MỘT CƠ SỐ 
Nội dung: 
 
 
 
0 1
0 0
0 1
0 0
0 1
    
 
   

 
    

a
a a
h(x) h(x)
1) log ( ) ( ) 
( ) (hoÆc ( ) )
2) log ( ) log ( ) 
( ) ( )
( ) (hoÆc ( ) )
Tæng qu²t: log ( ) log ( ) : ( )
( ) ( )
b
f x b f x a a
f x g x
f x g x a
f x g x
f x g x
f x g x x h x
f x g x
Bài tập 1: Giải các phương trình sau: 
   
 
2
2 2
2 1
4
2 13 3
2 82
3 8 2 6 4
2
3 4 2 1
2 1
5
3


     

   

  
1) log 2) log 
3) log log 4) log 
5) log log log
x
x
x x x x
x
x x
x
x x x    
   
  
2
2 1 2 2 2
2
2 2 4 3 2
1 1 7 8 0
2 1
2 2 4
9
1
1 4 2 2 1 1
4
     

     

    

 6) lg lg
7) log log 8) log log log 3 
9) log log 10) log log log (
x x x
x
x x x
x
x x
x
  2
1
3
2
 log x
Bài tập 2: Giải các phương trình sau: 
   
   
 
2
8 8 4 16
2
25 5 3
1
2
4
2 2 1 7 3 8 1
3
4 5 27 1 2 5 6
2 5
1) 2log log 2) log log 
3) log log log 4) lg lg lg 
5) log 
x
x
x x x x x
x x x x
x

       
      
   
   3 3
1 2 1
7 9 12 3 3 9 2
3
 6) log 3
7) log . . 8) log 3 
x
x x x
x
x x
  
    
Bài tập 3: Giải các phương trình sau: 
       
     
2 2 4 2 4 2
2 2 2 2
4 28
16 64
1 1 1 1
1
0 2 1 1 2
2
          
     

2 sincos
1) log log log log 
2) log sin 3) log log 2 4) log cos 
5) log 2.log 2 log 2 6) l
x xx
x x x
x x x x x x x x
x x x
     
   
2 2 2
3
9 3 3 3 2 3 2
2
4 2 2 4 9
1 1 1
3 1
2 1 1
23
2 27 4
      
 
     
 
   
2 3 6
2
og log log
7) 2 log =log .log 8) log log log log
9) log log log log 10) log log
x
x x x x x x
x
x x x x x
x
x x x x x
Bài tập 4:******* Giải các phương trình sau: 
     
         
28 2
4 2 92
2 3 2 3 3
4 8
1 1 1
3 1 4 5 6 3
4 2 2
1 2 4 4 2 3 4 6

        
           
33
1 1 12
4 4 4
1
1) log log log 2) log log log 
2
3
3) log log log 4) log log log
2
x
x x x x x x
x x x x x x
Chuyên đề PT-BPT MŨ VÀ LOGARITH Luyện thi THPT Quốc gia 2016 
Giáo viên: LÊ BÁ BẢO...0935.785.115... CLB Giáo viên trẻ TP Huế 10 
   
2
2 4 1 4 1
2 2
2 5 8 0 2 5 8 0         
2
5) log log log 6) log log log x x x x 
Bài tập 5: Giải các phương trình sau: 
   
2 2 22
64
2 1 2 3
  


 
a) Gi°i hÖ ph­¬ng tr×nh: 
 BiÕt log , log , log lËp th¯nh mét cÊp sè nh©n 
b) T×m biÕt lg , lg , lg theo thø tù l¯ mét cÊp sè céng. 
c) Gi°i ph­¬ng tr×nh: 
y z x
x x
x y z
xyz
x y z
x x
   
     
22
27 93
1
5 5 5
1 3
5 6 3
2 2
1 3 3 11 3 9

    
    
3
 log log log 
 log 3 log log . 
x x
x
x x x
x
Phƣơng pháp 2: ĐẶT ẨN PHỤ 
Dạng phương trình:    

    

log ( )
log ( ) 0 0 1 
( ) 0
a
a
t g x
f g x a
f t
 Chú ý:   g gPhÐp ®Æt log ( ) cã tËp gi² trÞ trªn D D : TËp x²c ®Þnh cða ( )at g x g x . 
 
    
       
2
2
VÝ dó: §Æt log 0 : .
 §Æt log 2 1 : 2 1 1 0x x
t x x t R
t x t
Bài tập 6: Giải các phương trình sau: 
   19 5 25
4 2 4
3
2
1 4 3 3 2 5 1 5 5 1
7
3 2 0 4 2 3
6
5
    
    

) log log ) log log 
) log log ) log log 
) log
x x
x
x
x
x
x x
x    
       
2 34 23
2
1
2 2 4 2 2 4
3
4
6 1 1 25
3
7 4 4 4 1 3 8 2
1 1 2
9 3 3 10
2 4 2

    
    
    
 
log ) lg lg
) log log ) log log log log 
) log log log log ) 
lg lg
x x
x xx
x x x
x x
x x
x x
 
 
 
2
3
16 2
9 2 32
25
1
11 3 16 2 12 4 64 5
13 125 1 14 2 9 2


   
   
log
) log log log ) log log
) log .log ) 
x x x
x
x
x x
x x x x
Bài tập 7: Giải các phương trình sau: 
2 2 4 2
2 2 3
3 3
1 1 1 3 5
10 6 9 3 1 0
1 5 0
      
    
   
2
2 2
1) log log 2) log log 
3) log log 4) log log 
5) log log 
x
x x x x
x x x x
x x    
   
2
3
2
2 2 2
3 2 2 227
2 2
3 0 3 2 7 12 3

  
        
 6) log log
7) 16log log 8) log log log 3
xx
xx
x x
x x x x x x
Bài tập 8: Giải các phương trình sau: 
2
8 3 32
2
3 3 3 3 3 2 2
3 2
4 2 62 2
6 2 3 2 2 5 0 6
3 6 2 7 6 13
      
     
log log logloglg10 lg lg100
log log log log log log log
1) 4 . 2) . . 3) 4 
4) 5) . 6) 6.9 . 
x xxx x x
x x x x
x x x
x x x x x x
Chuyên đề PT-BPT MŨ VÀ LOGARITH Luyện thi THPT Quốc gia 2016 
Giáo viên: LÊ BÁ BẢO...0935.785.115... CLB Giáo viên trẻ TP Huế 11 
Chủ đề 6: BẤT PHƢƠNG TRÌNH MŨ 
I- LÝ THUYẾT: 
 Nhắc lại một số tính chất: 
 1
1
 * TÝnh ®ång biÕn, nghÞch biÕn cða h¯m sè mñ : 
 §ång biÕn khi : 
 NghÞch biÕn khi 0 : 
x
x y
x y
y a
a x y a a
a x y a a

    
     
II- MỘT SỐ PHƢƠNG PHÁP GIẢI BẤT PHƢƠNG TRÌNH MŨ: 
PHƢƠNG PHÁP 1: Phöông phaùp ñöa veà cuøng moät cô soá_ Logarit hoá 
       
   
 
   
 
  
   
  
  
   
  
: 
* 
: 
: log
* ( ) 
: log
f x g x
af x
a
a f x g x
a a a
a f x g x
a f x b
a b b
a f x b
1
0 1
0 1
1
0
0 1
Bài tập 1: Giải các bất phương trình sau: 
1) 
6
29 3x x 2) 
 
1 1
2 1 3 12 2
x x 3)

 
2
1 5 25
x x
 4)
1
2
2
2
1
2


 x
xx
4) 
265 3
1
3
1
2 

xxx
 5) 
  
2 32 2 2
( 1) 1
x x
x x 
Bài tập 2: Giải các bất phương trình sau: 
1)   2( 1) 1xx x 2) 

  
1
2 1( 2 3) 1
x
xx x 3)    

    
22 1
2 21 1
x x
x x x x 
4)    
 
   
3 1
1 310 3 10 3
x x
x x 5)     1
1
1
2525 


 x
x
x
6) 
   1 12 2 3 3x x x x 7) 2431 5353.7   xxxx 
8) 
  
2 5 6 3
5 2
x x x
 9) 
 
2 4 4
3 2
x x x
--------------------------------------------------- 
 
 

          


( )( )
L­u ý: D³ng to²n
( ) 1
( ) 0NÕu 1 : ( ) 0 
1 *Tæng qu²t: ( ) 1 
NÕu 0 1 : ( ) 0 0 ( ) 1
( ) 0
g xf x
f x
g xa f x
a f x
a f x f x
g x
PHƢƠNG PHÁP 2: Đặt ẩn phụ_ Đại số hoá bất phƣơng trình 
 * Dạng 1: Đặt ẩn phụ đưa về bất phương trình bậc hai, bậc ba 
Bài tập 3: Giải các bất phương trình sau: 
   
     
        
       
2 2 2 2
4 8 2 5 2 6 7
1 2 2 2
1) 2.16 15.4 8 0 2) 3 4.3 27 0 3) 2 2 17 0
4) 5 5 4 0 5) 4 9.2 8 0 6) 2 2 3
x x x x x x
x x x x x x x x
Chuyên đề PT-BPT MŨ VÀ LOGARITH Luyện thi THPT Quốc gia 2016 
Giáo viên: LÊ BÁ BẢO...0935.785.115... CLB Giáo viên trẻ TP Huế 12 
* Dạng 2: Đặt ẩn phụ dựa vào nhận xét . 1A B   Dïng cho c¨n thøc 
Bài tập 4: Giải các bất phương trình sau: 
       
        
       
        3
1) 2 3 2 3 14 2) 2 3 2 3 4 
3) 6 35 6 35 12 4) 5 21 7 5 21 2 
x xx x
x x x x
x
* Dạng 3: Bất phương trình đẳng cấp   2 2 0mA nAB pB 
 
2 2
2
2
Ph­¬ng ph²p gi°i: 0 (1)
 TH1: XÐt 0. §èi víi bÊt ph­¬ng tr×nh mñ ta bá qua b­íc n¯y
 TH2: Chia 2 vÕ cða (1) cho : (1) 0
mA nAB pB
B
A A
B m n p
B B
  

   
      
   
----------------------------------------------------- 
Bài tập 5: Giải các bất phương trình sau: 
  
     
       
      
2 2 2
2 2 2
1 1 1
2 2 2
1 1 1 2 4 42
1) 6.9 13.6 6.4 0 2) 6.9 13.6 6.4 0 3) 2.4 6 9
4) 4.3 9.2 5.6 5) 2.4 6 9 6) 3 8.3 9.9 0
x x x x x x x x x x x x
x
x x x x x x x x x
MỘT SỐ CÁC BÀI TẬP KHÁC: 
Bài tập 6: Giải các bất phương trình sau: 
1)   5.4 2.25 7.10 0x x x 2) 


 1
1 1
3 1 1 3
x x
 3) 
  2 15 5 5 5x x x 
4)   25.2 10 5 25x x x 5)   29 3 3 9x x x 6) 

   
    
   
2 1
1
1 1
3 12
3 3
x x
7) 09.93.83 442   xxxx 8) xxxx 22.152 53632   
9) 
2 2 21 2 1 2 225 9 34 15.x x x x x x      10) 03.183
1
log
log 323  xx x 
11) 
3log
2
11
2
4
9
1
3
1












 xx
 12) 
xxxx 993.8
44 1   
13) 
1313 22 3.2839   xx 14)  
2 log1
1
2
2
log 5
2
2
x
x
x 
Bài tập 7: Giải các bất phương trình sau: 
1) 02515.349 12212
222
  xxxxxx 2)    
 
     
2 2
22 2 1 2
3 5 3 5 2 0
x x x x
x x 
3) * 013.43.4 21
2
 xxx 4) * 0124 21
2
  xxx 
5) 0
12
1221



x
xx
 6) 1
23
23.2 2


 
xx
xx
7) 
    1 115.2 1 2 1 2x x x 8)     1 18 2 4 2 5x x x 
Chuyên đề PT-BPT MŨ VÀ LOGARITH Luyện thi THPT Quốc gia 2016 
Giáo viên: LÊ BÁ BẢO...0935.785.115... CLB Giáo viên trẻ TP Huế 13 
Chủ đề 7: BẤT PHƢƠNG TRÌNH LOGARIT 
Nhắc lại: * TÝnh ®ång biÕn, nghÞch biÕn cða h¯m sè logarÝt : log
a
y x 
1 0
1 0
     
      
 §ång biÕn khi : log log
 NghÞch biÕn khi 0 : log log
a a
a a
a x y x y
a x y x y
Phƣơng pháp 1: ĐƢA VỀ CÙNG MỘT CƠ SỐ 
Nội dung: 
 
 
1
0
0 1
1
0
1
0 1
1
 
 
   
 
   
 
  
   
  
a a
a
h(x)
( ) ( )
NÕu : 
( )
1) log ( ) log ( ) 
( ) ( )
NÕu 0 : 
( )
NÕu : ( ) 
2) log ( ) 
NÕu 0 : ( )
Tæng qu²t: log (
b
b
f x g x
a
g x
f x g x a
f x g x
a
f x
a f x a
f x b a
a f x a
f  
1
0 1
0 1
 

    
  


h(x)
( )
( ) ( )
) log ( ) : ( )
( )
( ) ( )
h x
f x g x
x g x x h x
h x
f x g x
Bài tập 1: Giải các bất phương trình sau: 
1)   2log 4 2 6x x    2) 


2
3 1
log 0
1
x
x
x
 3) 13log
4
x 
4) 2 3 2 3log log 1 log .logx x x x   5) 4 163log 4 2log 4 3log 4 0x x x   
6) 
      
        
         
1 1
3 2
1 1
log 1 log 3
2 4
x x
 7) 
1
1
loglog
1
1
loglog
3
1
4
134





x
x
x
x
8)    25 5 5log 4 144 4log 2 1 log 2 1x x     9)   3 3log log 3 0x x 
10)     
2
1 4
3
log log 5 0x 11)        21 5
5
log 6 8 2log 4 0x x x 
12) 2 3
3
log log 3 1x   13)    28log 4 3 1x x 
Bài tập 2: Giải các bất phương trình sau: 
1)  22log 5 6 1  x x x 2)  23log 3 1  x x x 3) 
2
2
3
1
5
log 1 0
2

 
   
 
x
x
x x 
4) 6 2
3
1
log log 0
2

 
 
 
x
x
x
 5) 1
2
23
log 


x
x
x
 6)   2385log 2  xx
x
Chú ý: Kỹ năng sử dụng điều kiện làm đơn giải phép giải bất phương trình. 
Bài tập 3:******* Giải các bất phương trình sau: 
1)   3log log (9 6) 1xx 2)   3log log (9 72) 1xx 
3)   9log log (3 9) 1xx 4)   2log log (4 6) 1xx 
         2 3 4 2 22 25) 5 6 log log 5 5 6x x x x x x x x x x 
Chuyên đề PT-BPT MŨ VÀ LOGARITH Luyện thi THPT Quốc gia 2016 
Giáo viên: LÊ BÁ BẢO...0935.785.115... CLB Giáo viên trẻ TP Huế 14 
          2 25 16) 4 3 1 log 8 2 6 1 0
5
x
x x x x
x
Bài tập 4:******* Giải các bất phương trình sau: 
   
   
 

 
   

2
2 242
22
4 33
4
1 1 1 1
1) 2) 
log log 3 1log 3log 2
1 1 1 1
3) 4) 
1 log 3 log 1log 2 3 1
log
2
x xx xx
x x xx x
x
Bài tập 5: Giải các bất phương trình sau: 
   
 
 


     
   
 

1 1
2 2
/ /
2
) log log . 2) log log ( )
) Cho h¯m sè: log . TÝnh ( ) v¯ gi°i bÊt ph­¬ng tr×nh: ( )
log .
) 5) 
x x x
x
x x
y x x x f x f x
x
x
2 1 2 3
2 2
2
1
1 1
1 4 4 2 3 2 1 1
2 3
3 0 1 0
3 2 1
4 1
 
 
   
   
 

 

     
  
 
      
  
1 1
2 3
1 5 3 1
3 5
log
 6) 
log
) log log log .log 8) log log
log log
) 10) log log ( log log (
x
x
x x
x
x x x x x x
x x
x x x x
x
3
3
2
2 7 2 7
2 3
2 2
3 11
1 1
19 3
7 2 2 3 1 1
3 3
9 0 1 1
1
Phƣơng pháp 2: ĐẶT ẨN PHỤ 
Dạng phương trình:    

    

log ( )
log ( ) 0 0 1 
( ) 0
a
a
t g x
f g x a
f t
 Chú ý:   g gPhÐp ®Æt log ( ) cã tËp gi² trÞ trªn D D : TËp x²c ®Þnh cða ( )at g x g x . 
2
2
VÝ dó: §Æt log 0 : .
 §Æt log (2 1) : 2 1 1 0
    
       x x
t x x t R
t x t
Bài tập 6: Giải các bất phương trình sau: 
1) 1125loglog2
5

x
x 2) 03loglog
33
 xx 3)
1 3
5
3
2
 
/
log log
x
x 
4)  
 
1 2
1
5 lg 1 lgx x
 5) 



ln 2
0
ln 1
x
x
 6) 
2
0,2 0,2log 5log 6  x x 
7) 
6log
1
2log.2log
2
16/


x
xx
 8) 48loglog
22

x
x 
9)            2
1/5 1/255 5
log 5 3log 5 6log 5 2 0x x x 
10)  2 2 22 1 4
2
log log 3 5 log 3x x x    11)    x x 12 1
2
log 2 1 .log 2 2 2    
12) 
2
3 3 3log 4log 9 2log 3   x x x 13)    2 3 2log (3 2) 2.log 2 3 0x
x
Bài tập 7: Giải các bất phương trình sau: 
1) 
2
6 6log log6 12 x xx 2) xx
xx
coslogsinlog
2sincos
 
3) 
 
2
2 22 
log logx x
x  4 4)  2 41 2 16
2
log 4 log 2 4 log  x x x 
Chuyên đề PT-BPT MŨ VÀ LOGARITH Luyện thi THPT Quốc gia 2016 
Giáo viên: LÊ BÁ BẢO...0935.785.115... CLB Giáo viên trẻ TP Huế 15 
Chủ đề 8: HỆ PHƢƠNG TRÌNH MŨ_LOGARITH 
Phương pháp: 
 + Phƣơng pháp thế ( biểu diễn 1 ẩn theo ẩn còn lại và thay vào phƣơng 
trình còn lại). 
 + Phƣơng pháp dùng tính đơn điệu hàm số. 
 + Phƣơng pháp đánh giá dựa vào Bất đẳng thức. 
L­u ý: Th«ng th­êng, ta phèi hîp nhiÒu ph­¬ng ph²p dùa v¯o mèi quan hÖ gi÷a c²c ph­¬ng 
 tr×nh ®Ó ®­a ra kÕt qu°.
Bài tập 1: Giải các hệ phương trình sau: 
1) 
2 2 12
5
x y
x y
  

 
 2) 
2
3 2 77
3 2 7
x y
x y
  

 
 3) 
2( ) 1
5 125
4 1
x y
x y

 
 


4) 
3 2 3
4 128
5 1
x y
x y

 
 


 5) 
 






11
2
2
2
xx
y
yx
 6) 






16
2
log
log
y
x
x
y
y
x
8) 
2cot sin
sin cot
9 3
9 81 2
 

 
x y
y x
 9) 
   
log log
log4 log3
3 4
4 3
 


x y
x y
 10) 
   





1loglog 22 yx
yxyx
yx
11) 
 




9log24
36
6
2
xyx
x yx
 12) 






 42
522
yx
yx
 13)    











 
8
53
542
12
yx
yx
yx
yx
xyxy
14) 
 
 







yx
xy
yx
yx
2
2
69
12
2
2
 15) 










3
1
52
12
1
log
log
22
5
2 yx
x
y
y
x
16) 
 
2 7 10
1
8 0
y y
x
x y x
  

  
Bài tập 2: Giải các hệ phương trình sau: 
1)
3 3 3
log log 1 log 2
5
x y
x y
  

 
 2)
 
 




232log
223log
yx
yx
y
x
 3)
 
   
2 2
lg 1 3lg2
lg lg lg3
x y
x y x y
   

   
4) 





1loglog
272
33
loglog 33
xy
yx
xy
 5) 
   3 3
4 32
log 1 log
x y
y x
x y x y

 

    
6) 
2
2 log
log log
4 3y
x y
x
xy x
y y
 

 
7) 
 




 323log
2log
1 y
y
x
x
 8) 
2 2
lg lg 1
29
x y
x y
 

 
 9)
 
   
2 2log 1 log8
log log log3
   

   
x y
x y x y
10) 
 






2lglglg
1lg
2
xy
yx
 12)
 
 




 
yxyx
yx xy
5log3
27
5
3
 13) 
 





1log
1loglog
2
2
xy
x
x
y
yxy
14) 





1loglog
4
44
loglog 88
yx
yx
xy
 15)
4 2
2 2
log log 0
5 4 0
x y
x y
 

  
 16) 


















32
05log2log2
2
1 2
xy
yx
x
y
Chuyên đề PT-BPT MŨ VÀ LOGARITH Luyện thi THPT Quốc gia 2016 
Giáo viên: LÊ BÁ BẢO...0935.785.115... CLB Giáo viên trẻ TP Huế 16 
MỘT SỐ ĐỀ THI TRONG CÁC KÌ THI ĐH- CĐ: 
Bài tập 3: Giải các hệ phương trình sau: 
1) CĐ-A-2004 
log ( )
log log
2 2
2
4 2
5
2 4
  

 
x y
x y
 2) 
   3 3
4 32
log 1 log
x y
y x
x y x y

 
    
3) 
log ( ) log ( )
  

   
x y
x y x y
2 2
5 3
9 4 5
3 2 3 2 1
 4) 
log ( ) log ( )
2 2
2 3
2
1
  

   
x y
x y x y
5) ĐH-A-2004 
log ( ) logy x
y
x y

  

  
1 4
4
2 2
1
1
25
 6) ĐH-B-2005 
 log log .
x y
x y
    

 
2 3
9 3
1 2 1
3 9 3
7) Dự bị 2002 
4 2
4 3 0
log log 0
   

 
x y
x y
 8) Dự bị 2002 
 
 
3 2
3 2
log 2 3 5 3
log 2 3 5 3
    

   
x
y
x x x y
y y y x
9) ĐH-A-2009 
   
2 2
2 2
2 2
log 1 log
3 81x y xy
x y xy
 
   

 
 10) ĐH-D-2002 
3 2
1
2 5 4
4 2
2 2
x
x x
x
y y
y

  

 

 
11) Dự bị 2003: 
log log
2 2 3
 

 
y x
x y
xy y
 12) ĐH-B-2010: 
 2
2
log 3 1
4 2 3x x
y x
y
 

 
13) ĐH-D-2010: 
 
2
2 2
4 2 0
2log 2 log 0
x x y
x y
    

  
 13) 
3 1 2 3
2
2 2 3.2
3 1 1
    

   
x y y x
x xy x
14) 
 2 8
2 2 2 2
log 3log 2
3
    

    
x y x y
x y x y
 15) 


Tài liệu đính kèm:

  • pdfChuyen_de_Mu_va_Logarit_2015.pdf