Câu 1: (5,0 điểm)
Cho biểu thức
a) Rút gọn biểu thức P.
b) Tìm các giá trị của sao cho .
Câu 2: (5,0 điểm)
a) Giải phương trình:
b) Chứng minh rằng nếu ba số thỏa mãn hệ phương trình thì có ít nhất một trong ba số phải bằng 2.
Câu 3: (4,0 điểm)
Trên cùng một mặt phẳng tọa độ cho hai đường thẳng (d) và (D) lần lượt có phương trình là và (m là tham số).
a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng với mọi giá trị của .
b) Tìm giá trị của để gốc tọa độ cách đường thẳng (D) một khoảng lớn nhất.
Câu 4: (4,0 điểm)
Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA.
b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất.
UBND TỈNH KON TUM KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH LỚP 9 SỞ GIÁO DỤC VÀ ĐÀO TẠO NĂM HỌC 2012-2013 Môn: Toán ĐỀ CHÍNH THỨC Ngày thi: 16/3/2013 Thời gian: 150 phút (không kể thời gian giao đề) (Đề thi có 1 trang, gồm 5 câu) ĐỀ: Câu 1: (5,0 điểm) Cho biểu thức Rút gọn biểu thức P. Tìm các giá trị của sao cho . Câu 2: (5,0 điểm) Giải phương trình: Chứng minh rằng nếu ba số thỏa mãn hệ phương trình thì có ít nhất một trong ba số phải bằng 2. Câu 3: (4,0 điểm) Trên cùng một mặt phẳng tọa độ cho hai đường thẳng (d) và (D) lần lượt có phương trình là và (m là tham số). Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng với mọi giá trị của . Tìm giá trị của để gốc tọa độ cách đường thẳng (D) một khoảng lớn nhất. Câu 4: (4,0 điểm) Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF. a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA. b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất. Câu 5: (2,0 điểm) Cho là các độ dài ba cạnh của một tam giác và thỏa hệ thức . Chứng minh rằng . --------------------HẾT--------------------
Tài liệu đính kèm: